The Transcension of ET Civilizations

For some reason, 60 years seems to be enough time for SETI to scan the local star neighborhood for radio signals, a sign mainstream science believes will be the way we’ll prove there’s ET intelligence in the Universe.

And as Mankind hasn’t received any radio signals from Out There yet, the famous “Fermi Paradox” is invoked.

The following abstract gives yet another possible explanation of the “silence” and one I have heard of before, but it’s the first time I’ve seen it tossed out into the mainstream:

The emerging science of evolutionary developmental (“evo devo”) biology can aid us in thinking about our universe as both an evolutionary system, where most processes are unpredictable and creative, and a developmental system, where a special few processes are predictable and constrained to produce far-future-specific emergent order, just as we see in the common developmental processes in two stars of an identical population type, or in two genetically identical twins in biology. The transcension hypothesis proposes that a universal process of evolutionary development guides all sufficiently advanced civilizations into what may be called “inner space,” a computationally optimal domain of increasingly dense, productive, miniaturized, and efficient scales of space, time, energy, and matter, and eventually, to a black-hole-like destination. Transcension as a developmental destiny might also contribute to the solution to the Fermi paradox, the question of why we have not seen evidence of or received beacons from intelligent civilizations. A few potential evolutionary, developmental, and information theoretic reasons, mechanisms, and models for constrained transcension of advanced intelligence are briefly considered. In particular, we introduce arguments that black holes may be a developmental destiny and standard attractor for all higher intelligence, as they appear to some to be ideal computing, learning, forward time travel, energy harvesting, civilization merger, natural selection, and universe replication devices. In the transcension hypothesis, simpler civilizations that succeed in resisting transcension by staying in outer (normal) space would be developmental failures, which are statistically very rare late in the life cycle of any biological developing system. If transcension is a developmental process, we may expect brief broadcasts or subtle forms of galactic engineering to occur in small portions of a few galaxies, the handiwork of young and immature civilizations, but constrained transcension should be by far the norm for all mature civilizations.

The transcension hypothesis has significant and testable implications for our current and future METI and SETI agendas. If all universal intelligence eventually transcends to black-hole-like environments, after which some form of merger and selection occurs, and if two-way messaging (a send–receive cycle) is severely limited by the great distances between neighboring and rapidly transcending civilizations, then sending one-way METI or probes prior to transcension becomes the only real communication option. But one-way messaging or probes may provably reduce the evolutionary diversity in all civilizations receiving the message, as they would then arrive at their local transcensions in a much more homogenous fashion. If true, an ethical injunction against one-way messaging or probes might emerge in the morality and sustainability systems of all sufficiently advanced civilizations, an argument known as the Zoo hypothesis in Fermi paradox literature, if all higher intelligences are subject to an evolutionary attractor to maximize their local diversity, and a developmental attractor to merge and advance universal intelligence. In any such environment, the evolutionary value of sending any interstellar message or probe may simply not be worth the cost, if transcension is an inevitable, accelerative, and testable developmental process, one that eventually will be discovered and quantitatively described by future physics. Fortunately, transcension processes may be measurable today even without good physical theory, and radio and optical SETI may each provide empirical tests. If transcension is a universal developmental constraint, then without exception all early and low-power electromagnetic leakage signals (radar, radio, television), and later, optical evidence of the exoplanets and their atmospheres should reliably cease as each civilization enters its own technological singularities (emergence of postbiological intelligence and life forms) and recognizes that they are on an optimal and accelerating path to a black-hole-like environment. Furthermore, optical SETI may soon allow us to map an expanding area of the galactic habitable zone we may call the galactic transcension zone, an inner ring that contains older transcended civilizations, and a missing planets problem as we discover that planets with life signatures occur at a much lower frequencies in this inner ring than in the remainder of the habitable zone.

The mention of inner rings or zones smacks of the Anthropic Principle, so I’m not too impressed with this abstract, but it looks like it’s a very well written hypothesis.
But my question is this; “Why does the mainstream consider 60 years enough search time for ET activity to be detected?”
Are we really that convinced we’re on top of the local Galactic food-chain?
And where does that leave the issue of UFOs? Are they possible manifestations of civilizations who have attained Technological Singularity status?

Convince me.

The transcension hypothesis: Sufficiently advanced civilizations invariably leave our universe, and implications for METI and SETI

Hat tip to the Daily Grail.

About these ads

2 responses

  1. A further argument, suggested by Charles Stross in Accelerando , is that although advanced virtual civilizations – possibly en route developmentally to a Matrioshka Brain – could engage in travel to other star systems, they choose not to. This is not due to a lack of curiosity, but more through a set of energy-information economic choices, whereby in an information market predicated on available solar energy and planetary matter for building more computing capacity, the most successful virtual intelligences have to remain central to the star. Energy and proximity (and therefore wireless communication bandwidth and speed) are much greater closer to the matter and energy sources of the star, and larger planets, and so to be successful requires intra-solar-system focus. In this scenario, economic incentives to travel out of the solar system are inhibited.

  2. Hmm…good point. But in the Orion’s Arm Universe, entities such as the god-like Matrioshka Brains construct worm-hole connections to other stars to enhance their energy reserves, thus spreading culture of the “baseline” creatures.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 91 other followers

%d bloggers like this: