Future Space Explorations will be Humans with Robots

From Wired.com:

[...]

Rumors are currently swirling that NASA may soon announce plans to send humans back to the moon and then, onward, to an asteroid and Mars. While this immediately invokes visions of moon bases and the first footsteps on Mars, the truth is likely to be very different.

Nowadays some scientists and engineers at NASA and other space agencies are taking a second look at historical exploration scenarios. In the past, robotic and human exploration have been seen as rivals, we either do one or the other. Some in the spaceflight community have said we can do everything with machines while others argued that exploration is a man’s job. But there’s another option. The still-nascent field of telerobotics, where humans operate robotic surrogates from afar, means that our next exploration efforts will be quite unlike anything seen before.

With ever-improving computing power and communication protocols, astronauts could float in a space station in orbit around the moon or Mars, donning exoskeleton controllers to teleoperate robots in real time. These probes would drive, fly, drill, dig, scoop, and gather material faster and with more precision than current probes controlled from Earth. The best part of humans, our powerful brains that can identify the perfect geologic rock sample and make decisions on the fly, would be combined with all the advantages of robots — their advanced cameras, suites of instruments, and bodies that aren’t prone to degenerative problems like blindness and bone loss after months of space travel. One day our mechanical proxies could even help humans visit places that would destroy our bodies, like the hellish surface of Venus or the frozen ocean of Europa.

“I don’t want to replace the humans in space with robots,” said NASA engineer Geoffrey Landis, who works with the Spirit and Opportunity rover science team and writes science fiction. “But I think it’s a good way to start. Because we do have robots and the robots are getting much better, while the humans are evolving much more slowly. Let’s not do humans or robots, lets work together.”

The future will be one where human cognition visits another planet via machine while our bodies remain high above it. Welcome to planetary exploration rebooted or, perhaps, de-booted.

NASA is an exploration agency but there are currently several competing ideas as to what their destination should be. A plan that started development in 2004, President Bush’s Constellation program, would have built an enormous new rocket and tons of new hardware to enable a moon base and future Mars mission. Constellation, sometimes referred to as “Apollo on steroids,” would have also incurred enormous costs. The Obama administration canceled the effort in 2010 and decided NASA should avoid the deep and potentially dangerous gravity wells of planets, focusing instead on zero-g points around the moon or an asteroid. But vestiges of the old Constellation program remain.

Congress was all for ditching the moon and Mars plans but decided to keep building the shiny new rocket (maintaining employment in many of their constituent districts). The Space Launch System, which is scheduled to be ready for human crews in 2019, will be the most powerful rocket ever built, capable of bringing astronauts beyond low-Earth orbit, where the space station sits, for the first time since the Apollo days.

This puts NASA in a conundrum. “Once you’re out there, then what do you do?” said astronomer Jack Burns from the University of Colorado. Within a decade, we may be able to get people in the vicinity of the moon but “there’s not enough money in the budget to build a human lander.”

Space funding is flat. NASA is not projected to get much more than its current $17.7 billion per year for the next five years. This makes efforts that don’t require human landings on other worlds much more attractive. Burns is part of the new wave of scientists and engineers that are re-thinking exploration. He helps run a consortium called the Lunar University Network for Astrophysics Research (LUNAR) that is looking at missions where astronauts teleoperate robots on the lunar far side to conduct scientific investigations.

Under such a project, NASA would use its big new rocket to get astronauts to the Earth-moon Lagrange 2 point, where gravitational forces from both bodies cancel out and allow a spaceship to sit tight without expending fuel. From here, a crew could stay in continuous contact with mission control on Earth while floating 40,000 miles above the far side of the moon, an area never explored by Apollo. Perhaps as early as next decade, three astronauts could visit L2 in NASA’s Orion spacecraft. It’s possible that there they would meet up with a deep-space habitat derived from leftover ISS parts that NASA is currently planning.

From their vantage high above the moon, the crew would release a flotilla of rovers and probes to the lunar surface and direct them to interesting geological areas, such as the South Pole Aitken Basin. As one of the largest and oldest impact basins in the solar system, Aitken would provide valuable information about the heavy asteroid shellacking our planet received during its earliest days. A human operator would drive the rover around and select several 4 billion-year-old rocks, corresponding to a time when the first single-celled life forms appearing on Earth. If the crew could return such rocks back to a lab, scientists might be able to figure out the origin story of terrestrial life.

Image: NASA and the LUNAR consortium’s K-10 Black rover, performing tests in a crater in Canada. Matt Deans

Another project that researchers envision would use a remote-controlled robot to roll out 33-foot-long sheets of thin plastic studded with metallic antennas. These structures would act as a giant radio antenna, listening to signals from the earliest stars and galaxies. Scientists currently have little information about the time between the smooth universe just after the Big Bang and a billion years later, when the cosmos was full of stars and galaxies. Earth’s radio frequencies are jammed up with noise from garage door openers, radio, TV signals, and other technology so the lunar far side provides a clean window to this early history of the universe.

In the summer of 2013, NASA will begin telerobotics field tests at Ames research campus in Mountain View, California. Astronauts aboard the ISS will control a robot named K-10 as it travels over the surface and deploys a roll of film antennas.

“The future will be one in which an astronaut leads a team of robots,” said Burns. “They will be pioneers for what is going to be the new way of exploring in space and other planetary bodies.”

This works into the Singularity scenario very well because robotic tele-operations will quickly evolve into mind-uploading.

I’m not really sure if that’s a good thing, but it will be more cost effective to change an organism to fit an alien environment than try to engineer an environment to fit an alien organism ( meaning human explorers or settlers ).

Time will tell.

Almost Being There: Why the Future of Space Exploration Is Not What You Think

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 90 other followers

%d bloggers like this: