Daily Archives: January 2nd, 2013

Robot Rovers To Explore Asteroids and Moons

From kurzweilai.net:

Stanford researchers in collaboration with NASA JPL and MIT have designed a robotic platform that involves a mother spacecraft deploying one or several spiked, roughly spherical rovers to the Martian moon Phobos.

Measuring about half a meter wide, each rover would hop, tumble and bound across the cratered, lopsided moon, relaying information about its origins, as well as its soil and other surface materials.

Developed by Marco Pavone, an assistant professor in Stanford’s Department of Aeronautics and Astronautics, the Phobos Surveyor, a coffee-table-sized vehicle flanked by two umbrella-shaped solar panels, would orbit around Phobos throughout the mission. The researchers have already constructed a prototype.

The Surveyor would release only one hedgehog at a time. Together, the mothership and hedgehogs would work together to determine the hedgehog’s position and orientation. Using this information, they would map a trajectory, which the mother craft would then command the hedgehog to travel.

In turn, the spiky explorers would relay scientific measurements back to the Phobos Surveyor, which would forward the data to researchers on Earth. Based on their analysis of the data, the scientists would direct the mothership to the next hedgehog deployment site.

An entire mission would last two to three years. Just flying to Phobos would take the Surveyor about two years. Then the initial reconnaissance phase, during which the Surveyor would map the terrain, would last a few months. The mothership would release each of the five or six hedgehogs several days apart, allowing scientists enough time to decide where to release the next hedgehog.

For many decisions, Pavone’s system renders human control unnecessary. “It’s the next level of autonomy in space,” he said.

Moon clues

The synergy between the Phobos Surveyor and the hedgehogs would also be reflected in their sharing of scientific roles. The Surveyor would take large-scale measurements, while the hedgehogs would gather more detailed data. For example, the Surveyor might use a gamma ray or neutron detector to measure the concentration of various chemical elements and compounds on the surface, while the hedgehogs might use microscopes to measure the fine crevices and fissures lining the terrain.

Although scientists could use the platform to explore any of the solar system’s smaller members, including comets and asteroids, Pavone has designed it with the Martian moon Phobos in mind.

An analysis of Phobos’ soil composition could uncover clues about the moon’s origin. Scientists have yet to agree on whether Phobos is an asteroid captured by the gravity of Mars or a piece of Mars that an asteroid impact flung into orbit. This could have deep implications for our current understanding of the origin and evolution of the solar system, Pavone said.

To confirm Phobos’ origins, Pavone’s group plans to deploy most of the hybrids near Stickney Crater. Besides providing a gravity “sweet spot” where the mother craft can stably hover between Mars and Phobos, the crater also exposes the moon’s inner layers.

A human mission to Mars presents hefty challenges, mainly associated with the planet’s high gravity, which heightens the risk of crashing during takeoffs and landings. The large amounts of fuel needed to overcome Mars’ strong pull during takeoffs could also make missions prohibitively expensive.

But Phobos’ gravity is a thousand times weaker than on Mars. If Phobos did indeed originate from the red planet, scientists could study Mars without the dangers and costs associated with its high gravity simply by sending astronauts to Phobos. They could study the moon itself or use it as a base station to operate a robot located on Mars.  The moon could also serve as a site to test technologies for potential use in a human mission to the planet.

“It’s a piece of technology that’s needed before any more expensive type of exploration is considered,” Pavone said of the spacecraft-rover hybrid. “Before sampling we need to know where to land. We need to deploy rovers to acquire info about the surface.”

These probes could  be precursors to a sample return mission. A promising area to dig determined beforehand would cut down on cost and wear and tear.

But these rovers could be used on their own for private industry, such as Google Maps in order to give ( and sell ) accurate virtual reality tours to Millenials who wish to sit in their livingrooms and explore Mars safely.

A true pre-Singularity technology.

Acrobatic space rovers to explore moons and asteroids

Follow

Get every new post delivered to your Inbox.

Join 90 other followers