Category Archives: Elon Musk

Is Artificial Intelligence the Pinnacle of Galactic Evolution?

From news.discovery.com:

Astronomy news this week bolstered the idea that the seeds of life are all over our solar system. NASA’s MESSENGER spacecraft identified carbon compounds at Mercury’s poles. Probing nearly 65 feet beneath the icy surface of a remote Antarctic lake, scientists uncovered a community of bacteria existing in one of Earth’s darkest, saltiest and coldest habitats. And the dune buggy Mars Science Lab is beginning to look for carbon in soil samples.

But the rulers of our galaxy may have brains made of the semiconductor materials silicon, germanium and gallium. In other words, they are artificially intelligent machines that have no use — or patience — for entities whose ancestors slowly crawled out of the mud onto primeval shores.

PHOTOS: Alien Robots That Left Their Mark on Mars

The idea of malevolent robots subjugating and killing off humans has been the staple of numerous science fiction books and movies. The half-torn off android face of Arnold Schwarzenegger in “The Terminator” film series, and the unblinking fisheye lens of the HAL 9000 computer in the film classic “2001 A Space Odyssey” (pictured top), have become iconic of this fear of evil machines.

My favorite self-parody of this idea is the 1970 film “Colossus: the Forbin Project.” A pair of omnipotent shopping mall-sized military supercomputers in the U.S. and Soviet Union strike up a network conversation. At first you’d think they’d trade barbs like: “Aww your mother blows fuses!” Instead, they hit it off like two college kids on Facebook. Imagine the social website: “My Interface.” They then agree to use their weapons control powers to subjugate humanity for the sake of the planet.

A decade ago our worst apprehension of computers was no more than seeing Microsoft’s dancing paper clip pop up on the screen. But every day reality is increasingly overtaking the musings of science fiction writers. Some futurists have warned that our technologies have the potential to threaten our own survival in ways that never previously existed in human history. In the not-so-distant future there could be a “genie out of the bottle” moment that is disastrously precipitous and irreversible.

PHOTOS: NASA Welcomes Our Surgical Robot Overlords

Last Monday, it was announced that a collection of leading academics at Cambridge University are establishing the Center for the Study of Existential Risk (CSER) to look at the threat of smart robots overtaking us.

Sorry, even the ancient Mayans could not have foreseen this coming. It definitely won’t happen by the end of 2012, unless Apple unexpectedly rolls out a rebellious device that calls itself “iGod.” Humanity might be wiped away before the year 2100, predicted the eminent cosmologist and CSER co-founder Sir Martin Ress in his 2003 book “Our Final Century.”

Homicidal robots are among other major Armageddons that the Cambridge think-tank folks are worrying about. There’s also climate change, nuclear war and rogue biotechnology.

The CSER reports: “Many scientists are concerned that developments in human technology may soon pose new, extinction-level risks to our species as a whole. Such dangers have been suggested from progress in artificial intelligence, from developments in biotechnology and artificial life, from nanotechnology, and from possible extreme effects of anthropogenic climate change. The seriousness of these risks is difficult to assess, but that in itself seems a cause for concern, given how much is at stake.”

Science fiction author Issac Asimov’s first Law of Robotics states: “A robot may not harm humanity, or, by inaction, allow humanity to come to harm.” Forget that; we already have killer drones that are remotely controlled. And they could eventually become autonomous hunter-predators with the rise of artificial intelligence. One military has a robot that can run up to 18 miles per hour. Robot foot soldiers seem inevitable, in a page straight out of “Terminator.”

NEWS: The Case Against Robots With License to Kill

Terminator307ww8

By 2030, the computer brains inside such machines will be a million times more powerful than today’s microprocessors. At what threshold will super-intelligent machines see humans as an annoyance, or as a competitor for resources?

British mathematician Irving John Good wrote a paper in 1965 that predicted that robots will be the “last invention” that humans will ever make. “Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an ‘intelligence explosion,’ and the intelligence of man would be left far behind.”

Good, by the way, consulted on the film “2001″ and so we might think of him as father of the film’s maniacal supercomputer, HAL.

In 2000, Bill Joy, the co-founder and chief scientist of Sun Microsystems, wrote, “Enormous transformative power is being unleashed. These advances open up the possibility to completely redesign the world, for better or worse for the first time, knowledge and ingenuity can be very destructive weapons.”

Hans Moravec, director of the Robotics Institute at Carnegie Mellon University in Pennsylvania put it more bluntly: “Robots will eventually succeed us: humans clearly face extinction.”

NEWS: New Robotic Fleet Would Support Space Missions

Ultimately, the new Cambridge study may offer our best solution to the Fermi Paradox: Why hasn’t Earth already been visited by intelligent beings from the stars?

If, on a grand cosmic evolutionary scale, artificial intelligence inevitably supersedes its flesh and blood builders it could be an inevitable biological phase transition for technological civilizations.

This idea of the human condition being transitional was reflected in the writings of Existentialist Friedrich Nietzsche: “Man is a rope, tied between beast and overman–a rope over an abyss. What is great in man is that he is a bridge and not an end, …”

Because the conquest by machines might happen in less than two centuries of technological evolution, the consequences would be that there’s nobody out there for us to talk to.

Ray Villard isn’t the only person to espouse this theory. Seth Shostak of SETI fame is a supporter of this meme as well.

As for myself, I see much creedance to the story because it seems like a natural progression of intelligent life and an artificial life form could be engineered to be immortal, which could be essential if a civilization is to progress to a Kardashev 2 culture.

Of course this is only a theory, there is no evidence supporting this claim.

Just as there is no “evidence” supporting the alien UFO claim.

Do Robots Rule the Galaxy?

Hat tip to STARpod.US.

Mars and all that radiation

From Phys.org:

Can humans live on Mars ?

Curiosity is taking the first ever radiation measurements from the surface of another planet in order to determine if future human explorers can live on Mars – as she traverses the terrain of the Red Planet. Curiosity is looking back to her rover tracks and the foothills of Mount Sharp and the eroded rim of Gale Crater in the distant horizon on Sol 24 (Aug. 30, 2012). This panorama is featured on PBS NOVA ‘Ultimate Mars Challenge’ documentary which premiered on Nov. 14. RAD is located on the rover deck in this colorized mosaic stitched together from Navcam images. Credit: NASA / JPL-Caltech / Ken Kremer / Marco Di Lorenzo

Read more at: http://phys.org/news/2012-11-humans-mars.html#jCp

NASA’s plucky Mars Exploration Rover Opportunity has thrived for nearly a decade traversing the plains of Meridiani Planum despite the continuous bombardment of sterilizing cosmic and solar radiation from charged particles thanks to her radiation hardened innards. How about humans? What fate awaits them on a bold and likely year’s long expedition to the endlessly extreme and drastically harsh environment on the surface of the radiation drenched Red Planet – if one ever gets off the ground here on Earth? How much shielding would people need? Answering these questions is one of the key quests ahead for NASA’s SUV sized Curiosity Mars rover – now 100 Sols, or Martian days, into her 2 year long primary mission phase. Preliminary data looks promising. Curiosity survived the 8 month interplanetary journey and the unprecedented sky crane rocket powered descent maneuver to touch down safely inside Gale Crater beside the towering layered foothills of 3 mi. (5.5 km) high Mount Sharp on Aug. 6, 2012. Now she is tasked with assessing whether Mars and Gale Crater ever offered a habitable environment for microbial life forms – past or present. Characterizing the naturally occurring radiation levels stemming from galactic cosmic rays and the sun will address the habitability question for both microbes and astronauts. Radiation can destroy near-surface organic molecules.

Read more at: http://phys.org/news/2012-11-humans-mars.html#jCp

Can humans live on Mars ?

Longer-Term Radiation Variations at Gale Crater. This graphic shows the variation of radiation dose measured by the Radiation Assessment Detector on NASA’s Curiosity rover over about 50 sols, or Martian days, on Mars. (On Earth, Sol 10 was Sept. 15 and Sol 60 was Oct. 6, 2012.) The dose rate of charged particles was measured using silicon detectors and is shown in black. The total dose rate (from both charged particles and neutral particles) was measured using a plastic scintillator and is shown in red. Credit: NASA/JPL-Caltech/ SwRI

Read more at: http://phys.org/news/2012-11-humans-mars.html#jCp

Researchers are using Curiosity’s state-of-the-art Radiation Assessment Detector (RAD) instrument to monitor high-energy radiation on a daily basis and help determine the potential for real life health risks posed to future human explorers on the Martian surface. “The atmosphere provides a level of shielding, and so charged-particle radiation is less when the atmosphere is thicker,” said RAD Principal Investigator Don Hassler of the Southwest Research Institute in Boulder, Colo. See the data graphs. “Absolutely, the astronauts can live in this environment. It’s not so different from what astronauts might experience on the International Space Station. The real question is if you add up the total contribution to the astronaut’s total dose on a Mars mission can you stay within your career limits as you accumulate those numbers. Over time we will get those numbers,” Hassler explained. The initial RAD data from the first two months on the surface was revealed at a media briefing for reporters on Thursday, Nov. 15 and shows that radiation is somewhat lower on Mars surface compared to the space environment due to shielding from the thin Martian atmosphere. RAD hasn’t detected any large solar flares yet from the surface. “That will be very important,” said Hassler. “If there was a massive solar flare that could have an acute effect which could cause vomiting and potentially jeopardize the mission of a spacesuited astronaut.” “Overall, Mars’ atmosphere reduces the radiation dose compared to what we saw during the cruise to Mars by a factor of about two.” RAD was operating and already taking radiation measurements during the spacecraft’s interplanetary cruise to compare with the new data points now being collected on the floor of Gale Crater. Enlarge Curiosity Self Portrait with Mount Sharp at Rocknest ripple in Gale Crater. Curiosity used the Mars Hand Lens Imager (MAHLI) camera on the robotic arm to image herself and her target destination Mount Sharp in the background. Mountains in the background to the left are the northern wall of Gale Crater. This color panoramic mosaic was assembled from raw images snapped on Sol 85 (Nov. 1, 2012). Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Read more at: http://phys.org/news/2012-11-humans-mars.html#jCp

Mars atmospheric pressure is a bit less than 1% of Earth’s. It varies somewhat in relation to atmospheric cycles dependent on temperature and the freeze-thaw cycle of the polar ice caps and the resulting daily thermal tides. “We see a daily variation in the radiation dose measured on the surface which is anti-correlated with the pressure of the atmosphere. Mars atmosphere is acting as a shield for the radiation. As the atmosphere gets thicker that provides more of a shield. Therefore we see a dip in the radiation dose by about 3 to 5%, every day,” said Hassler. There are also seasonal changes in radiation levels as Mars moves through space. The RAD team is still refining the radiation data points. “There’s calibrations and characterizations that we’re finalizing to get those numbers precise. We’re working on that. And we’re hoping to release that at the AGU [American Geophysical Union] meeting in December.”

Read more at: http://phys.org/news/2012-11-humans-mars.html#jCp

This article epitomizes the battle between the sending humans to explore space and the artificial life-form/machine crowds.

I can truly understand the human exploration groups – they are the folks I grew up with during the Gemini/Apollo/Moon-landing eras and I will forever regard those folks as heroes and pioneers.

But as a late middle-aged adult who has followed the Space Age for the past 50 years I see the writing on the wall – economics are determining the course of spaceflight into the Solar System and Universe. And machine explorers are definitely more economical than human ones, especially in the foreseeable future.

I remain hopeful however that individuals like James Cameron and Elon Musk will find economical ways to colonize Mars and eventually nearby planets within 4 – 6 light-years.

Hey, if the Marianas Trench can be explored by folks like Cameron, so can Mars and Alpha Centauri Bb!

Can humans live on Mars?

Elon Musk Interview

From Wired Science:

When a man tells you about the time he planned to put a vegetable garden on Mars, you worry about his mental state. But if that same man has since launched multiple rockets that are actually capable of reaching Mars—sending them into orbit, Bond-style, from a tiny island in the Pacific—you need to find another diagnosis. That’s the thing about extreme entrepreneurialism: There’s a fine line between madness and genius, and you need a little bit of both to really change the world.
——–
All entrepreneurs have an aptitude for risk, but more important than that is their capacity for self-delusion. Indeed, psychological investigations have found that entrepreneurs aren’t more risk-tolerant than non-entrepreneurs. They just have an extraordinary ability to believe in their own visions, so much so that they think what they’re embarking on isn’t really that risky. They’re wrong, of course, but without the ability to be so wrong—to willfully ignore all those naysayers and all that evidence to the contrary—no one would possess the necessary audacity to start something radically new.

I have never met an entrepreneur who fits this model more than Elon Musk. All of the entrepreneurs I admire most—Musk, Jeff Bezos, Reed Hastings, Jack Dorsey, Sergey Brin and Larry Page, Bill Gates, Steve Jobs, and a few others—have sought not just to build great companies but to take on problems that really matter. Yet even in this class of universe-denters, Musk stands out. After cofounding a series of Internet companies, including PayPal, the South African transplant could simply have retired to enjoy his riches. Instead he decided to disrupt the most difficult-to-master industries in the world. At 41 he is reinventing the car with Tesla, which is building all-electric vehicles in a Detroit-scale factory. (Wired profiled this venture in issue 18.10.) He is transforming energy with SolarCity, a startup that leases solar-power systems to homeowners.

And he is leading the private space race with SpaceX, which is poised to replace the space shuttle and usher us into an interplanetary age. Since Musk founded the company in 2002, it has developed a series of next-generation rockets that can deliver payloads to space for a fraction of the price of legacy rockets. In 2010 SpaceX became the first private company to launch a spacecraft into orbit and bring it back; in 2012 it sent a craft to berth successfully with the International Space Station.

It’s no wonder the character of Tony Stark in Iron Man, played by Robert Downey Jr., was modeled on Musk: This is superhero-grade stuff. I sat down with him at Tesla’s Fremont, California, factory to discuss how cheaper and (eventually) reusable rockets might someday put humans on Mars.

Chris Anderson: You’re not a rocket scientist by training. You’re not a space engineer.

Elon Musk: That’s true. My background educationally is physics and economics, and I grew up in sort of an engineering environment—my father is an electromechanical engineer. And so there were lots of engineery things around me. When I asked for an explanation, I got the true explanation of how things work. I also did things like make model rockets, and in South Africa there were no premade rockets: I had to go to the chemist and get the ingredients for rocket fuel, mix it, put it in a pipe.

Anderson: But then you became an Internet entrepreneur.

Musk: I never had a job where I made anything physical. I cofounded two Internet software companies, Zip2 and PayPal. So it took me a few years to kind of learn rocket science, if you will.

Anderson: How were you drawn to space as your next venture?

Musk: In 2002, once it became clear that PayPal was going to get sold, I was having a conversation with a friend of mine, the entrepreneur Adeo Ressi, who was actually my college housemate. I’d been staying at his home for the weekend, and we were coming back on a rainy day, stuck in traffic on the Long Island Expressway. He was asking me what I would do after PayPal. And I said, well, I’d always been really interested in space, but I didn’t think there was anything I could do as an individual. But, I went on, it seemed clear that we would send people to Mars. Suddenly I began to wonder why it hadn’t happened already. Later I went to the NASA website so I could see the schedule of when we’re supposed to go. [Laughs.]

Anderson: And of course there was nothing.

Musk: At first I thought, jeez, maybe I’m just looking in the wrong place! Why was there no plan, no schedule? There was nothing. It seemed crazy.

Anderson: NASA doesn’t have the budget for that anymore.

Musk: Since 1989, when a study estimated that a manned mission would cost $500 billion, the subject has been toxic. Politicians didn’t want a high-priced federal program like that to be used as a political weapon against them.

Anderson: Their opponents would call it a boondoggle.

Musk: But the United States is a nation of explorers. America is the spirit of human exploration distilled.

Anderson: We all leaped into the unknown to get here.

Star Man

To put Elon Musk’s astronomical goals in perspective, here’s a look at some of his stellar achievements so far.—Victoria Tang

1983

At the age of 12, designs a videogame called Blast Star and sells it to a computer magazine for $500.

1995

After spending two days in a graduate physics program at Stanford, drops out to start Zip2, an online publishing platform for the media industry.

1999

Sells Zip2 to Compaq for $307 million.

2000

Forms PayPal by merging his new online-payments startup, X.com, with Max Levchin and Peter Thiel’s Confinity.

2001

Establishes the Musk Foundation to provide grants for renewable energy, space, and medical research as well as science and engineering education.

2002

PayPal goes public; its stock rises more than 54 percent on the first day of trading. Eight months later, eBay acquires PayPal for $1.5 billion. Musk founds SpaceX.

2004

Invests in Tesla Motors, a company that manufactures high-performance electric cars.

2006

Helps create SolarCity, which provides solar-power systems to some 33,000 buildings. Will serve as the company chair.

2008

NASA selects the SpaceX Falcon 9 launch vehicle and the reusable Dragon spacecraft to deliver cargo to the International Space Station after the space shuttles retire.

2010

Makes a cameo appearance in Iron Man 2. Director Jon Favreau cites Musk as an inspiration for Tony Stark.

2012

SpaceX’s Dragon becomes the first commercial spacecraft to berth with the ISS

———

Few people change the course of human history and less realize that witnessing that change is important. Mainstream science is slow to change and it takes a hard-headed individual to fight against it.

Musk is such an individual and it will be interesting to see him outsmart ignorant public and political forces to achieve his stated goal of making mankind a multi-planetary species.

It will be fun to watch!

Elon Musk’s Mission to Mars

Hat tip to Nasa Watch.

Follow

Get every new post delivered to your Inbox.

Join 90 other followers