Category Archives: exploration

Interstellar Travel and the Long View

From Centauri Dreams:

[...]

Building Structures That Last

A sense of that futurity pervaded our recent sessions at the Tennessee Valley Interstellar Workshop in Huntsville. Several speakers alluded to instances in human history where people looked well beyond their own generation, a natural thought for a conference discussing technologies that might take decades if not centuries to achieve. We talked about a solar power project that might take 35 years, or perhaps 50 (much more about this in coming days).

chartres2

The theme became explicit when educator and blogger Mike Mongo talked about getting interstellar issues across to the public, referring to vast projects like the pyramids and the great cathedrals of Europe. Cathedrals are a fascinating study in their own right, and it’s worth pausing on them as we ponder long-term notions. Although they’re often considered classic instances of people building for a remote future, some cathedrals were built surprisingly quickly. Anyone who has stood in awe at the magnificent lines of Chartres southwest of Paris is surprised to learn that it came together in less than 60 years (the main structure in a scant 26), though keep in mind that this was partly a reconstruction of an earlier structure that dated back to 1145.

Image: The great cathedral at Chartres.

With unstinting public support, such things could happen even with the engineering of the day, creating what historians now view as the high point of French Gothic art. Each cathedral, of course, tells its own tale. Salisbury Cathedral was completed except for its spire in 45 years. Other cathedrals took longer. Notre Dame in Paris was the work of a century, as was Lincoln Cathedral, while the record for cathedral construction surely belongs to Cologne, where the foundation stone was laid in 1248. By the time of the Reformation 300 years later, the roof was still unfinished, and later turmoil pushed the completion of the cathedral all the way into the 19th Century, with many stops and starts along the way.

Remember, too, that the cathedral builders lived at a time when the average lifespan was in the 30s. The 15-year old boy who started working on the foundation of a cathedral might have hoped to see its consecration but he surely knew the odds didn’t favor it. Humans are remarkably good at this kind of thing, even if the frenetic pace and short-term focus of our times makes us forget it. Robert Kennedy pointed out to me at the conference that the Dutch dike system has been maintained for over 500 years, and can actually be traced back as far as the 9th Century. The idea of technology-building across generations is hardly something new to our civilization.

The ‘long result’ context is an interesting one in which to place our interstellar thinking. Naturally we’d like to make things happen faster than the 4000-year plus journeys I talked about on Friday with worldships, though my guess is that as the species becomes truly spacefaring and begins to differentiate, we’ll see colonies aboard O’Neill-class cylinders holding thousands, many of the colonists being people who will spend less and less time on a planetary surface. At some point, it would be entirely natural to see one of these groups decide to head into the interstellar deep. They would be, after all, taking their world with them, a world that was already home.

Evolutionary Change in Space

Gerald Driggers is a retired engineer and current science fiction author who worked with Gerald O’Neill in the 1970s. I see him as worldship material because he has chosen for the last seventeen years to live on a boat, saying “It was the closest thing I could get to a space ship.” Driggers believes we can begin our interstellar work by getting humans to Mars, where they will be faced with many of the challenges that will attend much longer-term missions. We must, after all, build a system-wide infrastructure, mastering the complexities of power generation and resource extraction on entirely new scales, before we can truly hope to go interstellar.

And what happens to humans as they begin working in extreme environments? Evolution doesn’t stop when we leave the planet, as Freeman Dyson is so fond of pointing out. These are changes that should be beneficial, says Driggers. “Evolutionary steps toward becoming interstellar voyagers reduce the chances for human failures on these journeys. We’re going to change, and we will continue to change as we look toward longer voyages. The first humans to arrive around another star system probably won’t be like anybody in the audience today.” Responding to evolutionary change, Martians may make the best designers and builders of interstellar craft.

driggers_hsv

Image: Gerald Driggers discussing a near-term infrastructure that will one day support interstellar missions.

Get it right on Mars, in other words, and we get it right elsewhere and learn the basics of infrastructure building all the way to the Kuiper Belt, with active lunar settlements and plentiful activity among the asteroids. Along the way we adapt, we change. Driggers’ worst-case scenario has Martian settlements delayed until the mid-22nd Century, but he is hopeful that the date can be moved up and the infrastructure begun.

All of which brings me back to something Mike Mongo talked about. We are not going to the stars ourselves, but we can inspire and train people who will solve many of the technical problems going forward, just as they train the next generation. One of these generations will one day train the crew of the first human interstellar mission, or if we settle on robotics, the controllers who will manage our first probes. Placing ourselves in the context of the long result acknowledges our obligation to future generations as we begin putting foundation stones in place.

This is not the first time Paul Gilster and others have compared building interstellar ships and matching infrastructure to building pyramids and cathedrals. Both were long range projects in the human past that required multi-generational planning, money, political will and many generations of workers who never saw the end result.

Now, whether interstellar ships will be multi-generation, fast, slow or whatever in the end, they will result from human cultural biases and will be unique in this region of space.

In the end, they will be the result of many generations of human genius.

The Long Result

Another Asteroid Mining Company Start-Up

From Centauri Dreams:

Deep Space Industries is announcing today that it will be engaged in asteroid prospecting through a fleet of small ‘Firefly’ spacecraft based on cubesat technologies, cutting the costs still further by launching in combination with communications satellites. The idea is to explore the small asteroids that come close to Earth, which exist in large numbers indeed. JPL analysts have concluded that as many as 100,000 Near Earth Objects larger than the Tunguska impactor (some 30 meters wide) are to be found, with roughly 7000 identified so far. So there’s no shortage of targets (see Greg Matloff’s Deflecting Asteroids in IEEE Spectrum for more on this.

‘Smaller, cheaper, faster’ is a one-time NASA mantra that DSI is now resurrecting through its Firefly spacecraft, each of which masses about 25 kilograms and takes advantages of advances in computing and miniaturization. In its initial announcement, company chairman Rick Tumlinson talked about a production line of Fireflies ready for action whenever an NEO came near the Earth. The first launches are slated to begin in 2015. Sample-return missions that are estimated to take between two and four years to complete are to commence the following year, with 25 to 70 kilograms of asteroid material becoming available for study. Absent a fiery plunge through the atmosphere, such samples will have their primordial composition and structure intact.

jpeg

The Deep Space Industries announcement is to be streamed live later today. It will reflect the company’s ambitious game plan, one that relies on public involvement and corporate sponsorship to move the ball forward. David Gump is CEO of the new venture:

“The public will participate in FireFly and DragonFly missions via live feeds from Mission Control, online courses in asteroid mining sponsored by corporate marketers, and other innovative ways to open the doors wide. The Google Lunar X Prize, Unilever, and Red Bull each are spending tens of millions of dollars on space sponsorships, so the opportunity to sponsor a FireFly expedition into deep space will be enticing.”

The vision of exploiting space resources to forge a permanent presence there will not be unfamiliar to Centauri Dreams readers. Tumlinson sums up the agenda:

“We will only be visitors in space until we learn how to live off the land there. This is the Deep Space mission – to find, harvest and process the resources of space to help save our civilization and support the expansion of humanity beyond the Earth – and doing so in a step by step manner that leverages off our space legacy to create an amazing and hopeful future for humanity. We are squarely focused on giving new generations the opportunity to change not only this world, but all the worlds of tomorrow.  Sounds like fun, doesn’t it?”

So we have asteroid sample return as part of the mix, but the larger strategy calls for the use of asteroid-derived products to power up space industries. The company talks about using asteroid-derived propellants to supply eventual manned missions to Mars and elsewhere, with Gump likening nearby asteroid resources to the Iron Range of Minnesota, which supplied Detroit’s car industry in the 20th Century. DSI foresees supplying propellant to communication satellites to extend their working lifetime, estimating that each extra month is worth $5 million to $8 million per satellite. The vision extends to harvesting building materials for subsequent technologies like space-based power stations. Like I said, the key word is ‘ambitious.’

“Mining asteroids for rare metals alone isn’t economical, but makes sense if you already are processing them for volatiles and bulk metals for in-space uses,” said Mark Sonter, a member of the DSI Board of Directors. “Turning asteroids into propellant and building materials damages no ecospheres since they are lifeless rocks left over from the formation of the solar system.  Several hundred thousand that cross near Earth are available.”

In the near-term category, the company has a technology it’s calling MicroGravity Foundry that is designed to transform raw asteroid materials into metal parts for space missions. The 3D printer uses lasers to draw patterns in a nickel-charged gas medium, building up parts from the precision placement of nickel deposits. Because it does not require a gravitational field to work, the MicroGravity Foundry could be a tool used by deep space astronauts to create new parts aboard their spacecraft by printing replacements.

The team behind Deep Space Industries has experience in commercial space activities. Tumlinson, a well-known space advocate, was a founding trustee of the X Prize and founder of Orbital Outfitters, a commercial spacesuit company. Gump has done space-related TV work, producing a commercial shot on the International Space Station. He’s also a co-founder of Transformational Space Corporation. Geoffrey Notkin is the star of ‘Meteorite Men,’ a TV series about hunting meteorites. The question will be how successful DSI proves to be in leveraging that background to attract both customers and corporate sponsors.

With such bold objectives, I can only wish Deep Space Industries well. The idea of exploiting inexpensive CubeSat technology and combining it with continuing progress in miniaturizing digital tools is exciting, but the crucial validation will be in those early Firefly missions and the data they return. If DSI can proceed with the heavier sample return missions it now envisions, the competitive world of asteroid prospecting (think Planetary Resources) will have taken another step forward. Can a ‘land rush’ for asteroid resources spark the public’s interest, with all the ramifications that would hold for the future of commercial space? Could it be the beginning of the system-wide infrastructure we’ll have to build before we think of going interstellar?

All of this asteroid mining activity sounds exciting and I can hardly wait for DSI and Planetary Resources to begin their plans. Both are using untried and new technology to develop these new industries and can be extended to such environments as the Moon and Mars.

Mankind will eventually follow. And these new technologies will let us expand into this Universe.

Or the Multiverse.

Deep Space Industries: Mining Near-Earth Asteroids

Another Earth 2 and Ark 2 Meme

From news.discovery.com:

Icarus

Given the “big bang” of exoplanet discoveries over the past decade, I predict that there is a reasonable chance a habitable planet will be found orbiting the nearest star to our sun, the Alpha Centauri system. Traveling at just five percent the speed of light, a starship could get there in 80 years.

One Earth-sized planet has already been found at Alpha Centauri, but it is a molten blob that’s far too hot for life as we know it to survive.

The eventual discovery of a nearby livable world will turbo-boost interest and ignite discussions about sending an artificially intelligent probe to investigate any hypothetical life forms there.

But no nation will be capable of paying the freight for such a mission. Building a single starship would be orders of magnitude more expensive than the Apollo moon missions. And, the science goals alone could not justify the cost/benefit of undertaking such a gigaproject. Past megaprojects, such as Apollo and the Manhattan Project, could be justified by their promise of military supremacy, energy independence, support of the high tech industry or international prestige. The almost altruistic “we boldly go for all mankind” would probably stop an interstellar mission in its tracks.

WIDE ANGLE: Project Icarus — Reaching for Interstellar Space

The enormous risk and cost for starship development aside, future nations would also be preoccupied with competing gigaprojects that promise shorter term and directly useful solutions — such as fusion power plants, solar power satellites, or even fabrication of a subatomic black hole. However, the discovery of an extraterrestrial civilization at Alpha Centauri could spur an international space race to directly contact them and possibly have access to far advanced alien technology. (Except that it would take far advanced technology to get there in the first place!)

Microsystem technologist Frederik Ceyssens proposes that there should be a grassroots effort to privately organize and finance an interstellar mission. This idea would likely be received with delight at Star Trek conventions everywhere.

What’s the motivation for coughing up donations for an interstellar mission? Ceyssens says the single inspiring goal would be to establish a second home planet for humanity and the rest of Earth’s life forms by the end of the millennium. Such a project might be called “Ark II.”

“It could be our privilege to be able to lay the foundation of a something of unfathomable proportions,” Ceyssens writes.

He envisions establishing an international network of non-governmental organizations focused on private and public fundraising for interstellar exploration. The effort would be a vastly scaled up version of the World Wildlife Fund for Nature.

“Existing space advocacy organizations such as the Planetary Society or the British Interplanetary Society could play a central role in establishing the initiative, and gain increased momentum,” Ceyssens says. He proposes establishing a Noble foundation or a government wealth fund that can be fed with regular donations over, literally, an estimated 300 years it would take to have the bucks and technology to build a space ark.

ANALYSIS: Uniting the Planet for a Journey to Another Star

This slow and steady approach would avoid having a single generation make huge donations to the cause. Each consecutive generation would contribute some intellectual and material resources. A parallel can be found in the construction of the great cathedrals in late medieval Europe. An incentive might be that one of the distance descendants of each of the biggest donors is guaranteed a seat on the colonization express.

Unlike the British colonies in the great Age of Discovery, it is impractical to think of another star system as an outpost colony that can trade with Imperial Earth. There is no financial potential to investors.

Comparing an interstellar voyage to building cathederals because it could be a multi-generation project is a valid point, although it doesn’t seem to take into account advancing technology in robotics and rocket propulsion that can shorten the time needed to construct such a mission.

Actually, I wouldn’t be a bit surprised if another Earth-type world was discovered at Alpha Centauri, an interstellar mission would be mounted by the end of the 21st Century by a James Cameron-type and it wouldn’t take 80 years to get there either!

Grassroots Funding for a Stellar Noah’s Ark?

 

Hat tip to Graham Hancock.com.

Whither Martian Radiation?

From New Scientist:

You needn’t fry on Mars. Readings from NASA’s Curiosity rover suggest radiation levels on the Red Planet are about the same as those in low Earth orbit, where astronauts hang out for months on the International Space Station. A Mars visit would still be dangerous though, due to the years-long return trip.

Unlike Earth, Mars has no magnetosphere shielding it from solar and galactic radiation. But it does have a thin atmosphere, and readings from two of Curiosity’s instruments suggest this provides some protection.

“This is the first ever measurement of the radiation environment on any planet other than Earth,” Curiosity team member Don Hassler said at a press briefing on 15 November. “Astronauts can live in this environment.”

The rover’s weather station recorded evidence of what is known as a thermal tide on Mars. Sunlight heats the planet’s atmosphere on the side facing the sun, causing it to expand upwards and triggering a decrease in air pressure. But things chill quickly on the other side, so that the atmosphere deflates and becomes denser.

As Mars rotates, the bulge of heated air travels with the “day” side from east to west. Curiosity feels this effect as changes in air pressure over the course of a Martian day, rover scientist Claire Newman of Ashima Research in California said during the briefing.

Radiation shield

At the same time, the rover’s radiation monitor saw daily dips in charged particles that match the increases in air pressure that come with a denser atmosphere. “The atmosphere is acting as a shield to radiation,” Hassler said.

The scientists were not ready to put numbers to the daily radiation dose people would experience on Mars. But the overall levels are lower than those the spacecraft carrying Curiosity recorded during its interplanetary flight, and about what astronauts see on the ISS.

“It’s roughly what we were expecting,” astrobiologist Lewis Dartnell of University College London told New Scientist.

The biggest threat to Mars voyagers would be the cumulative radiation exposure during the long trip. NASA estimates that a return human mission to Mars would take three years. During that time astronauts might receive more than seven times the radiation dose they get during six months on the ISS.

Setting limits

Building up radiation exposure increases the risk of developing various cancers, so NASA has set limits on how much total radiation astronauts can experience over the course of their careers. Figuring out the exact risk on Mars is crucial to understanding the total dose a human mission would face and whether it is within safe limits, Hassler said.

Solar flares would also be a problem. On Earth these eruptions of charged particles from the sun are largely deflected by the magnetosphere. But Mars enjoys no such protection, and since Curiosity has yet to see a flare, it is unclear how much shielding the thin atmosphere would provide. ‘

Dartnell suggests that a base or colony on Mars could be built underground to avoid surface radiation. Or, with enough advance warning, astronauts could retreat to protective shelters during a flare. But is all that trouble worth it just to send humans where robots already thrive?

“An astronaut or geologist that’s trained in science that has a brain and a pair of hands and pair of eyes with a rock hammer can do a lot more on the surface on Mars before breakfast than a robot can do in weeks,” says Dartnell.

Well, I guess I stand corrected on my blog post yesterday about human destroying radiation on the Martian surface yesterday!

This is a good thing, if one is a supporter of human based spaceflight and colonization, but one must remember the financial cost of such an endeavor, despite of the discovery that the Martian atmosphere can turn away radiation to a manageable level.

But perhaps Elon Musk can get his initial wish of landing an automated green-house on Mars? That would would be a good test to see if organics can grow there with few harmful mutations?

Mars is safe from radiation – but the trip there isn’t

Follow

Get every new post delivered to your Inbox.

Join 91 other followers