Category Archives: advanced propulsion technology

NASA’s Green Aviation Research and a possible reason for Alien Invasion

From Phys.Org:

NASA has selected eight large-scale integrated technology demonstrations to advance aircraft concepts and technologies that will reduce the impact of aviation on the environment over the next 30 years, research efforts that promise future travelers will fly in quieter, greener and more fuel-efficient airliners.

The demonstrations, which are part of by NASA’s Environmentally Responsible Aviation (ERA) Project, will focus on five areas—aircraft drag reduction through innovative flow control concepts, weight reduction from advanced composite materials, fuel and noise reduction from advanced engines, emissions reductions from improved engine combustors, and fuel consumption and community noise reduction through innovative airframe and engine integration designs. The selected demonstrations are: Active Flow Control Enhanced Vertical Tail Flight Experiment: Tests of technology that can manipulate, on demand, the air that flows over a full-scale commercial aircraft tail. Damage Arresting Composite Demonstration: Assessment of a low-weight, damage-tolerant, stitched composite structural concept, resulting in a 25 percent reduction in weight over state-of-the-art aircraft composite applications. Adaptive Compliant Trailing Edge Flight Experiment: Demonstration of a non-rigid wing flap to establish its airworthiness in the flight environment.Highly Loaded Front Block Compressor Demonstration: Tests to show Ultra High Bypass (UHB) or advanced turbofan efficiency improvements of a two-stage, transonic high-pressure engine compressor.2nd Generation UHB Ratio Propulsor Integration: Continued development of a geared turbofan engine to help reduce fuel consumption and noise.Low Nitrogen Oxide Fuel Flexible Engine Combustor Integration: Demonstration of a full ring-shaped engine combustor that produces very low emissions. Flap and Landing Gear Noise Reduction Flight Experiment: Analysis, wind tunnel and flight tests to design quieter flaps and landing gear without performance or weight penalties.UHB Engine Integration for a Hybrid Wing Body: Verification of power plant and airframe integration concepts that will allow fuel consumption reductions in excess of 50 percent while reducing noise on the ground.”With these demonstrations we will take what we’ve learned and move from the laboratory to more flight and ground technology tests,” said Fay Collier, ERA project manager based at NASA’s Langley Research Center in Hampton, Va. “We have made a lot of progress in our research toward very quiet aircraft with low carbon footprints. But the real challenge is to integrate ideas and pieces together to make an even larger improvement. Our next steps will help us work towards that goal.”

The demonstrations, which are part of by NASA’s Environmentally Responsible Aviation (ERA) Project, will focus on five areas—aircraft drag reduction through innovative flow control concepts, weight reduction from advanced composite materials, fuel and noise reduction from advanced engines, emissions reductions from improved engine combustors, and fuel consumption and community noise reduction through innovative airframe and engine integration designs. The selected demonstrations are: Active Flow Control Enhanced Vertical Tail Flight Experiment: Tests of technology that can manipulate, on demand, the air that flows over a full-scale commercial aircraft tail. Damage Arresting Composite Demonstration: Assessment of a low-weight, damage-tolerant, stitched composite structural concept, resulting in a 25 percent reduction in weight over state-of-the-art aircraft composite applications. Adaptive Compliant Trailing Edge Flight Experiment: Demonstration of a non-rigid wing flap to establish its airworthiness in the flight environment.Highly Loaded Front Block Compressor Demonstration: Tests to show Ultra High Bypass (UHB) or advanced turbofan efficiency improvements of a two-stage, transonic high-pressure engine compressor.2nd Generation UHB Ratio Propulsor Integration: Continued development of a geared turbofan engine to help reduce fuel consumption and noise.Low Nitrogen Oxide Fuel Flexible Engine Combustor Integration: Demonstration of a full ring-shaped engine combustor that produces very low emissions. Flap and Landing Gear Noise Reduction Flight Experiment: Analysis, wind tunnel and flight tests to design quieter flaps and landing gear without performance or weight penalties.UHB Engine Integration for a Hybrid Wing Body: Verification of power plant and airframe integration concepts that will allow fuel consumption reductions in excess of 50 percent while reducing noise on the ground.”With these demonstrations we will take what we’ve learned and move from the laboratory to more flight and ground technology tests,” said Fay Collier, ERA project manager based at NASA’s Langley Research Center in Hampton, Va. “We have made a lot of progress in our research toward very quiet aircraft with low carbon footprints. But the real challenge is to integrate ideas and pieces together to make an even larger improvement. Our next steps will help us work towards that goal.”

I find this research fascinating because it relates to a National Geographic Special I saw yesterday about an alien invasion ( and yes, according to the people being interviewed, the U.S. Government does have a plan for such a thing ) and the reason the aliens ( which were robots no less ) invaded was because the Earth is full of chlorophyll and other biology that could be harvested for biofuel.

Now I seriously don’t believe total machine intelligence would travel tens or hundreds of light-years and for hundreds of years to harvest biofuel for their starship which would surely be powered by anti-matter or vacuum energy. I hardly believe that these sources are fueled by biofuels.

But if the aliens are cybernetic organisms, such as the “Borg” of Star Trek fame, then I could assume their interest in our world for biofuel is believable and the U.S. Government’s plan for fighting an invasion is realistic.

Maybe the government really does know something we don’t? I sure hope we don’t find out the hard way.

NASA’s green aviation research throttles up into second gear

NatGeo ‘Alien Invasion’ Part 1 ( password ) scroll down for passwords.

NatGeo ‘Alien Invasion’ Part 2password )

Slow Galactic Colonization, Zoo Hypothesis and the Fermi Paradox

I couldn’t resist posting this today after reading it at Centauri Dreams. It’s extremely mainstream, by which the papers Paul Gilster discusses uses geological travel times for interstellar travel and the effects on the Fermi Paradox.

But he talks about the “zoo” hypothesis for our supposed lack of contact with ETIs ( no discussion of UFOs what-so-ever of course ) and I find that fascinating:

[…]

Many explanations for the Fermi paradox exist, but Hair and Hedman want to look at the possibility that starflight is so long and difficult that it takes vast amounts of time (measured in geologic epochs) to colonize on the galactic scale. Given that scenario, large voids within the colonized regions may still persist and remain uninhabited. If the Earth were located inside one of these voids we would not be aware of the extraterrestrial expansion. A second possibility is that starflight is so hard to achieve that other civilizations have simply not had time to reach us despite having, by some calculations, as much as 5 billion years to have done so (the latter figure comes from Charles Lineweaver, and I’ll have more to say about it in a moment).

Image: A detailed view of part of the disc of the spiral galaxy NGC 4565. Have technological civilizations had time enough to spread through an entire galaxy, and if so, would they be detectable? Credit: ESA/NASA.

The authors work with an algorithm that allows modeling of the expansion from the original star, running through iterations that allow emigration patterns to be analyzed in light of these prospects. It turns out that in 250 iterations, covering 250,000 years, a civilization most likely to emigrate will travel about 500 light years, for a rate of expansion that is approximately one-fourth of the maximum travel speed of one percent of the speed of light, the conservative figure chosen for this investigation. A civilization would spread through the galaxy in less than 50 million years.

These are striking numbers. Given five billion years to work with, the first civilization to develop starfaring capabilities could have colonized the Milky Way not one but 100 times. The idea that it takes billions of years to accomplish a galaxy-wide expansion fails the test of this modeling. Moreover, the idea of voids inside colonized space fails to explain the Fermi paradox as well:

…while interior voids exist at lower values of c initially, most large interior voids become colonized after long periods regardless of the cardinal value chosen, leaving behind only relatively small voids. In an examination of several 250 Kyr models with a wide range of parameters, the largest interior void encountered was roughly 30 light years in diameter. Since humans have been broadcasting radio since the early 20th century and actively listening to radio signals from space since 1960 (Time 1960), it is highly unlikely that the Earth is located in a void large enough to remain undiscovered to the present day. It follows that the second explanation of Fermi’s Paradox (Landis 1998) is not supported by the model presented.

There are mitigating factors that can slow down what the authors call the ‘explosively exponential nature’ of expansion, in which a parent colony produces daughter colonies and the daughters continue to do the same ad infinitum. The paper’s model suggests that intense competition for new worlds can spring up in the expanding wavefront of colonization. At the same time, moving into interior voids to fill them with colonies slows the outward expansion. But even models set up to reduce competition between colonies present the same result: Fermi’s lunchtime calculations seem to be valid, and the fact that we do not see evidence of other civilizations suggests that this kind of galactic expansion has not yet taken place.

Temporal Dispersion into the Galaxy

I can’t discuss Hair and Hedman’s work without reference to Hair’s earlier paper on the expansion of extraterrestrial civilizations over time. Tom had sent me this one in 2011 and I worked it into the Centauri Dreams queue before getting sidetracked by preparations for the 100 Year Starship symposium in Orlando. If I had been on the ball, I would have run an analysis of Tom’s paper at the time, but the delay gives me the opportunity to consider the two papers together, which turns out to work because they are a natural fit.

For you can see that Hair’s spatial analysis goes hand in glove with the question of why an extraterrestrial intelligence might avoid making its presence known. Given that models of expansion point to a galaxy that can be colonized many times over before humans ever emerged on our planet, let’s take up a classic answer to the Fermi paradox, that the ‘zoo hypothesis’ is in effect, a policy of non-interference in local affairs for whatever reason. Initially compelling, the idea seems to break down under close examination, given that it only takes one civilization to act contrary to it.

But there is one plausible scenario that allows the zoo hypothesis to work: The influence of a particularly distinguished civilization. Call it the first civilization. What sort of temporal head start would this first civilization have over later arrivals?

Hair uses Monte Carlo simulations, drawing on the work of Charles Lineweaver and the latter’s estimate that planets began forming approximately 9.3 billion years ago. Using Earth as a model and assuming that life emerged here about 600 million years after formation, we get an estimate of 8.7 billion years ago for the appearance of the first life in the Milky Way. Factoring in how long it took for complex land-dwelling organisms to evolve (3.7 billion years), Lineweaver concludes that the conditions necessary to support intelligent life in the universe could have been present for at least 5.0 billion years. At some point in that 5 billion years, if other intelligent species exist, the first civilization arose. Hair’s modeling goes to work on how long this civilization would have had to itself before other intelligence emerged. The question thus has Fermi implications:

…even if this first grand civilization is long gone . . . could their initial legacy live on in the form of a passed down tradition? Beyond this, it does not even have to be the first civilization, but simply the first to spread its doctrine and control over a large volume of the galaxy. If just one civilization gained this hegemony in the distant past, it could form an unbroken chain of taboo against rapacious colonization in favour of non-interference in those civilizations that follow. The uniformity of motive concept previously mentioned would become moot in such a situation.

Thus the Zoo Hypothesis begins to look a bit more plausible if we have each subsequent civilization emerging into a galaxy monitored by a vastly more ancient predecessor who has established the basic rules for interaction between intelligent species. The details of Hair’s modeling are found in the paper, but the conclusions are startling, at least to me:

The time between the emergence of the first civilization within the Milky Way and all subsequent civilizations could be enormous. The Monte Carlo data show that even using a crowded galaxy scenario the first few inter-arrival times are similar in length to geologic epochs on Earth. Just what could a civilization do with a ten million, one hundred million, or half billion year head start (Kardashev 1964)? If, for example, civilizations uniformly arise within the Galactic Habitable Zone, then on these timescales the first civilization would be able to reach the solar system of the second civilization long before it evolved even travelling at a very modest fraction of light speed (Bracewell 1974, 1982; Freitas 1980). What impact would the arrival of the first civilization have on the future evolution of the second civilization? Would the second civilization even be allowed to evolve? Attempting to answer these questions leads to one of two basic conclusions, the first is that we are alone in the Galaxy and thus no one has passed this way, and the second is that we are not alone in the Galaxy and someone has passed this way and then deliberately left us alone.

The zoo hypothesis indeed. A galactic model of non-interference is a tough sell because of the assumed diversity between cultures emerging on a vast array of worlds over time. But Hair’s ‘modified zoo hypothesis’ has great appeal. It assumes that the oldest civilization in the galaxy has a 100 million year head start, allowing it to become hugely influential in monitoring or perhaps controlling emerging civilizations. We would thus be talking about the possibility of evolving similar cultural standards with regard to contact as civilizations follow the lead of this assumed first intelligence when expanding into the galaxy. It’s an answer to Fermi that holds out hope we are not alone, and I’ll count that as still another encouraging thought on the day the world didn’t end.

I have a problem with this simply because of the economics involved; what is the motivation for ETIs to expand into the Universe to begin with?

Like, are they like humans in the sense that we go because “it’s there?”

Or are there more practical impulses involved like “can we make money” on these endeavors?

A commentor to this particular post wrote that before we colonize ( if we ever do ) the Moon, Mars and other planets in this Solar System ( and perhaps the closer stars ) that it’ll be cheaper to shoot small probes with micro cameras to these places ( NASA is already proposing sending tele-operated probes to the Lunar surface instead of astronauts ) and sell virtual reality tours. Expanded versions of Google Earth and Google Mars!

In other words, it’s cheaper to build Universes that have Star Trek and upload your mind into it than actually building such things as star-ships!

Could this be an answer to the Fermi Paradox?

New Models of Galactic Expansion

Canned “E” Primates for Interstellar Travel and a Possible Destination for Them

From kurzweilai.net:

The awesome 100 Year Starship (100YSS) initiative by DARPA and NASA proposes to send people to the stars by the year 2100 — a huge challenge that will require bold, visionary, out-of-the-box thinking.

There are major challenges. “Using current propulsion technology, travel to a nearby star (such as our closest star system, Alpha Centauri, at 4.37 light years from the Sun, which also has a a planet with about the mass of the Earth orbiting it) would take close to 100,000 years,” according to Icarus Interstellar, which has teamed with the Dorothy Jemison Foundation for Excellence and the Foundation for Enterprise Development to manage the project.

“To make the trip on timescales of a human lifetime, the rocket needs to travel much faster than current probes, at least 5% the speed of light. … It’s actually physically impossible to do this using chemical rockets, since you’d need more fuel than exists in the known universe,” Icarus Interstellar points out.

Daedalus concept (credit: Adrian Mann)

So the Icarus team has chosen a fusion-based propulsion design for Project Icarus, offering a million times more energy compared to chemical reactions. It would be evolved from their Daedalus design.

This propulsion technology is not yet well developed, and there are serious problems, such as the need for heavy neutron shields and risks of interstellar dust impacts, equivalent to small nuclear explosions on the craft’s skin, as the Icarus team states.

Although Einstein’s fundamental speed-of-light limit seems solid, ways to work around it were also proposed by physicists at the recent 100 Year Starship Symposium.

However, as a reality check, I will assume as a worse case that none of these exotic propulsion breakthroughs will be developed in this century.

That leaves us with an unmanned craft, but for that, as Icarus Interstellar points out, “one needs a large amount of system autonomy and redundancy. If the craft travels five light years from Earth, for example, it means that any message informing mission control of some kind of system error would take five years to reach the scientists, and another five years for a solution to be received.

“Ten years is really too long to wait, so the craft needs a highly capable artificial intelligence, so that it can figure out solutions to problems with a high degree of autonomy.”

If a technological Singularity happens, all bets are off. However, again as a worse case, I assume here that a Singularity does not happen, or fully simulating an astronaut does not happen. So human monitoring and control will still be needed.

The mind-uploading solution

The very high cost of a crewed space mission comes from the need to ensure the survival and safety of the humans on-board and the need to travel at extremely high speeds to ensure it’s done within a human lifetime.

One way to  overcome that is to do without the wetware bodies of the crew, and send only their minds to the stars — their “software” — uploaded to advanced circuitry, augmented by AI subsystems in the starship’s processing system.

The basic idea of uploading is to “take a particular brain [of an astronaut, in this case], scan its structure in detail, and construct a software model of it that is so faithful to the original that, when run on appropriate hardware, it will behave in essentially the same way as the original brain,” as Oxford University’s Whole Brain Emulation Roadmap explains.

It’s also known as “whole brain emulation” and “substrate-independent minds” — the astronaut’s memories, thoughts, feelings, personality, and “self” would be copied to an alternative processing substrate — such as a digital, analog, or quantum computer.

An e-crew — a crew of human uploads implemented in solid-state electronic circuitry — will not require air, water, food, medical care, or radiation shielding, and may be able to withstand extreme acceleration. So the size and weight of the starship will be dramatically reduced.

Combined advances in neuroscience and computer science suggest that mind uploading technology could be developed in this century, as noted in a recent Special Issue on Mind Uploading of the International Journal of Machine Consciousness).

Uploading research is politically incorrect: it is tainted by association with transhumanists — those fringe lunatics of the Rapture of the Nerds — so it’s often difficult to justify and defend.

The Rapture of the Nerds thing could very well be more of a political sticking point than a technological one in the next few decades, especially in the conservative United States.

However the U.S. has the most advanced robotic tech and DARPA has already developed electronic “telepathy” gear so soldiers can control warfare drones from anywhere on the planet, so it’s not a stretch that semi “autonomous” AI will be in the mix for future space probes in the coming decades.

But there will always be a human being in the loop because no matter how advanced computers become, they will never attain “consciousness.”

Uploaded e-crews for interstellar missions

__________________________________

Just in case we do develop canned “e” primates via mind uploading in the future, there could be a nearby destination for them:

Astronomers have discovered what may be five planets orbiting Tau Ceti, the closest single star beyond our solar system whose temperature and luminosity nearly match the sun’s, Science Now reports.

If the planets are in fact there, one of them is about the right distance from the star to sport mild temperatures, oceans of liquid water, and even life, and slight changes in Tau Ceti’s motion through space suggest that the star may be responding to gravitational tugs from five planets that are only about two to seven times as massive as Earth.

Tau Ceti is only 12 light-years from Earth, just three times as far as our sun’s nearest stellar neighbor, Alpha Centauri.

Early SETI target

The Sun (left) is both larger and somewhat hotter than the less active Tau Ceti (right).

Tau Ceti resembles the sun so much that astronomer Frank Drake, who has long sought radio signals from possible extraterrestrial civilizations, made it his first target back in 1960. Unlike most stars, which are faint, cool, and small, Tau Ceti is a bright G-type yellow main-sequence star like the sun, a trait that only one in 25 stars boasts.

Moreover, unlike Alpha Centauri, which also harbors a G-type star and even a planet, Tau Ceti is single, so there’s no second star in the system whose gravity could yank planets away.

It’s the fourth planet — planet e — that the scientists suggest might be another life-bearing world, even though it’s about four times as massive as Earth.

If the planets exist, they orbit a star that’s about twice as old as our own, so a suitable planet has had plenty of time to develop life much more advanced than Homo sapiens.

I have a question; if we ship “e” humans to another star, what is the motivation for them to study a base human habitable planet?

Would they retain primate curiosity or would they be altruistic?

Another Earth just 12 light-years away?

Another Earth 2 and Ark 2 Meme

From news.discovery.com:

Icarus

Given the “big bang” of exoplanet discoveries over the past decade, I predict that there is a reasonable chance a habitable planet will be found orbiting the nearest star to our sun, the Alpha Centauri system. Traveling at just five percent the speed of light, a starship could get there in 80 years.

One Earth-sized planet has already been found at Alpha Centauri, but it is a molten blob that’s far too hot for life as we know it to survive.

The eventual discovery of a nearby livable world will turbo-boost interest and ignite discussions about sending an artificially intelligent probe to investigate any hypothetical life forms there.

But no nation will be capable of paying the freight for such a mission. Building a single starship would be orders of magnitude more expensive than the Apollo moon missions. And, the science goals alone could not justify the cost/benefit of undertaking such a gigaproject. Past megaprojects, such as Apollo and the Manhattan Project, could be justified by their promise of military supremacy, energy independence, support of the high tech industry or international prestige. The almost altruistic “we boldly go for all mankind” would probably stop an interstellar mission in its tracks.

WIDE ANGLE: Project Icarus — Reaching for Interstellar Space

The enormous risk and cost for starship development aside, future nations would also be preoccupied with competing gigaprojects that promise shorter term and directly useful solutions — such as fusion power plants, solar power satellites, or even fabrication of a subatomic black hole. However, the discovery of an extraterrestrial civilization at Alpha Centauri could spur an international space race to directly contact them and possibly have access to far advanced alien technology. (Except that it would take far advanced technology to get there in the first place!)

Microsystem technologist Frederik Ceyssens proposes that there should be a grassroots effort to privately organize and finance an interstellar mission. This idea would likely be received with delight at Star Trek conventions everywhere.

What’s the motivation for coughing up donations for an interstellar mission? Ceyssens says the single inspiring goal would be to establish a second home planet for humanity and the rest of Earth’s life forms by the end of the millennium. Such a project might be called “Ark II.”

“It could be our privilege to be able to lay the foundation of a something of unfathomable proportions,” Ceyssens writes.

He envisions establishing an international network of non-governmental organizations focused on private and public fundraising for interstellar exploration. The effort would be a vastly scaled up version of the World Wildlife Fund for Nature.

“Existing space advocacy organizations such as the Planetary Society or the British Interplanetary Society could play a central role in establishing the initiative, and gain increased momentum,” Ceyssens says. He proposes establishing a Noble foundation or a government wealth fund that can be fed with regular donations over, literally, an estimated 300 years it would take to have the bucks and technology to build a space ark.

ANALYSIS: Uniting the Planet for a Journey to Another Star

This slow and steady approach would avoid having a single generation make huge donations to the cause. Each consecutive generation would contribute some intellectual and material resources. A parallel can be found in the construction of the great cathedrals in late medieval Europe. An incentive might be that one of the distance descendants of each of the biggest donors is guaranteed a seat on the colonization express.

Unlike the British colonies in the great Age of Discovery, it is impractical to think of another star system as an outpost colony that can trade with Imperial Earth. There is no financial potential to investors.

Comparing an interstellar voyage to building cathederals because it could be a multi-generation project is a valid point, although it doesn’t seem to take into account advancing technology in robotics and rocket propulsion that can shorten the time needed to construct such a mission.

Actually, I wouldn’t be a bit surprised if another Earth-type world was discovered at Alpha Centauri, an interstellar mission would be mounted by the end of the 21st Century by a James Cameron-type and it wouldn’t take 80 years to get there either!

Grassroots Funding for a Stellar Noah’s Ark?

 

Hat tip to Graham Hancock.com.

One Way Interstellar Space Crews

Would you go on an one way interstellar trip to Alpha Centauri? ( Or Proxima if planets were found there? )

The question was put out to the public about one way trips to Mars recently, but interstellar travel is an entirely different animal due to the infinitely longer distances and travel times involved.

But according to Paul Gilster on the Centauri Dreams web site, filling a crew roster might not be a problem:

If you were offered a chance to make an interstellar journey, would you take it? How about a garden-variety trip to low-Earth orbit? I’m often asked questions like this when I make presentations to the public, and I have no hesitation in saying no. Though I’m no longer doing any flight instructing, I used to love flying airplanes, but getting into a rocket and being propelled anywhere is not for me. To each his own: I’m fascinated with deep space and hope many humans go there, and you can count on me to write about their missions and robotic ones as well while keeping my office right here on Earth.

The point is, the percentage of people who actually go out and take the incredible journeys and fly the dangerous missions is vanishingly low. But throughout history, there have always been a few intrepid souls who were willing to get into the canoes or the caravels or the biplanes and open up new territories and technologies. Thank God we have the Neil Armstrongs and Sergei Krikalyovs of this world. And somewhere in England there are the relatives of some young 18th Century adventurer who signed up as a cabin boy and wound up living out his life in Australia. People like this drive the species forward and put into action the yearning for exploration I suspect we all share.

I’ve told this story before, but in the past few weeks a high percentage of the people coming to this site are coming for the first time, so I’ll tell it again. Robert Forward was the scientist who more than any other argued that we study methods for reaching the stars, saying that it could be done without violating the laws of physics and would therefore one day occur. Forward’s son Bob told me what happened one night at dinner when he asked his father whether he would get on a starship if it landed nearby and he was asked to go out and explore the universe, with the proviso that he could never come back. Forward’s response was instantaneous: “Of course!”

To which his wife Martha could only reply: “What about us? You mean you would just leave your family and disappear into the universe?” That made Forward pensive for only a moment as he replied, “You have to understand. This is what I have dreamed about all my life.”

To be fair, if an Earth-type world was ever found at Alpha Centauri, the chances of ever traveling there would be extremely low. It’s just plain cheaper to build super-telescopes to zoom in and literally “scope-out” any kind of life forms and biospheres there. No environmental issues, no contamination and no astronauts need apply.

The only way a planet at Alpha Centauri will be touched by human beings is like in James Cameron’s ‘Avatar.’ An “unobtainium” element with extraordinary abilities would have to be found that would make the time, effort and investments cost-effective to exploit.

As in Solar System exploitation, the reasons to explore extra-solar worlds would have to involve a strong economic element. Even personal freedoms comes in at a distant second.

Deck Hands for a Four Decade Journey

Are People the Biggest Challenge to Interstellar Travel?

From msnbc.msn.com:

The biggest challenge in mounting a space mission to another star may not be technology, but people, experts say.

Scientists, engineers, philosophers, psychologists andleaders in many other fields gathered in Houston last week for the 100 Year Starship Symposium, a meeting to discuss launching an interstellar voyage within 100 years.

“It seems like it would be so hard, and the biggest obstacle is ourselves. Once we get out of our way, once we commit to this, then it’s a done deal,” said former “Star Trek: The Next Generation” actor LeVar Burton, who is serving on the advisory committee of the 100 Year Starship project.

The initiative hopes to spur the development of new propulsion technologies, life support systems, starship and habitat designs, as well as myriad other necessaryinnovations, to send a vehicle beyond our solar system — where no manmade object has yet traveled — and to another star. As the closest stars to the sun are still light-years away, such a feat will be daunting. [How Interstellar Space Travel Works (Infographic)]

But Burton wasn’t the only one who said the most difficult part of interstellar spaceflight may be corralling public and governmental support, and getting the right thinkers to work together to attack the problem.

“I think the greatest challenges are going to be what the greatest challenges in anything are, and that’s the people piece,” said former NASA astronaut Mae Jemison, who was the first African-American woman to travel to space. Jemison is heading the new 100 Year Starship organization, which was founded with seedmoney from the Defense Advanced Research Projects Agency (DARPA).

“The really exciting thing and the scary thing is I know I can’t do it by myself, but there are a lot of people who want to help,” Jemison added.

Interstellar spaceflight for humanity isn’t inevitable, she said — merely imperative.

“We could screw it up,” Jemison told Space.com. “We could decide not to do it. But I can tell you what, if we don’t figure out how to do it, then we probably aren’t going to be around to worry about whether the sun turns into a red gas giant. Unless we find some focal aspiration that pushes us further, that helps us see ourselves as a species that we should be cooperating with, we’re going to be in trouble.”

Plus, if human beings can solve the challenges of interstellar spaceflight, in the process they will have solved many of the problems plaguing Earth today, experts said. For example, building a starship will require figuring out how to conserve and recycle resources, how to structure societies for the common well-being, and how to harness and use energy sustainably.

Perhaps the 100 Year Starship Symposium should partner up with the Build The Enterprise Project? They have a 100 year timeline also and I couldn’t think of a better marriage.

The biggest challenge to interstellar spaceflight? Us 

Sister Earths

Really? Warp Drive Actually Possible?

From Space.com:

HOUSTON — A warp drive to achieve faster-than-light travel — a concept popularized in television’s Star Trek — may not be as unrealistic as once thought, scientists say.

warp drive would manipulate space-time itself to move a starship, taking advantage of a loophole in the laws of physics that prevent anything from moving faster than light. A concept for a real-life warp drive was suggested in 1994 by Mexican physicist Miguel Alcubierre; however, subsequent calculations found that such a device would require prohibitive amounts of energy.

Now physicists say that adjustments can be made to the proposed warp drive that would enable it to run on significantly less energy, potentially bringing the idea back from the realm of science fiction into science.

“There is hope,” Harold “Sonny” White of NASA’s Johnson Space Center said here Friday (Sept. 14) at the100 Year Starship Symposium, a meeting to discuss the challenges of interstellar spaceflight.

Warping space-time

An Alcubierre warp drive would involve a football-shape spacecraft attached to a large ring encircling it. This ring, potentially made of exotic matter, would cause space-time to warp around the starship, creating a region of contracted space in front of it and expanded space behind. [Star Trek’s Warp Drive: Are We There Yet? | Video]

Meanwhile, the starship itself would stay inside a bubble of flat space-time that wasn’t being warped at all.

“Everything within space is restricted by the speed of light,” explained Richard Obousy, president of Icarus Interstellar, a non-profit group of scientists and engineers devoted to pursuing interstellar spaceflight. “But the really cool thing is space-time, the fabric of space, is not limited by the speed of light.”

With this concept, the spacecraft would be able to achieve an effective speed of about 10 times the speed of light, all without breaking the cosmic speed limit.

The only problem is, previous studies estimated the warp drive would require a minimum amount of energy about equal to the mass-energy of the planet Jupiter.

But recently White calculated what would happen if the shape of the ring encircling the spacecraft was adjusted into more of a rounded donut, as opposed to a flat ring. He found in that case, the warp drive could be powered by a mass about the size of a spacecraft like the Voyager 1 probe NASA launched in 1977.

Furthermore, if the intensity of the space warps can be oscillated over time, the energy required is reduced even more, White found.

“The findings I presented today change it from impractical to plausible and worth further investigation,” White told SPACE.com. “The additional energy reduction realized by oscillating the bubble intensity is an interesting conjecture that we will enjoy looking at in the lab.”

This is a boon and a most fortuitous opportunity if it’s the real deal. But like most things in the real world, there is something that is an essential ingredient in any research project.

Money.

Warp Drive May Be More Feasible Than Thought, Scientists Say

Stanton Friedman: Flying Saucers and Science

Once again apologies for my infrequent posting. I have an ongoing family health crisis ( not me this time! ) which takes my time. But I’ll give you a little food for thought this week in this UFOTV video by Stanton Friedman, nuclear physicist and premier UFO researcher and major proponent of the nuts and bolts theory of UFOs.

Personally, I don’t think all UFOs are alien space vehicles, but there’s a chance a good many of them are, and Friedman gives his case a nice reason to be believed.

Enjoy!

Flying Saucers and Science – Stanton Friedman LIVE

SETI, ETI Civilization Detection and UFOs

When one discusses the UFO flying saucer phenomenon, the idea of civilizations coming to Earth and how they get here becomes moot because the mode is obvious — the flying saucer is a spaceship that transcends space and time and is technology many hundreds, if not thousands of years ahead of ours.

But mainstream science claims — “Not so fast. Einstein claimed that nothing can go faster than the speed of light in this Universe. Things that appear to transcend that speed are fake and optical illusions. If aliens come here, it will be in slower-than light vessels that are easily detected.”

I find that idea interesting, especially if there are civilisations thousands of millenia ahead of us are actually noticing us, they are using technologies that are magical to us.

Anything else, they are not as advanced as we think they are:

SETI always makes us ask what human-centered assumptions we are making about extraterrestrial civilizations. When it comes to detecting an actual technology, like the starships we’ve been talking about in the last two posts, we’ve largely been forced to study concepts that fit our understanding of physics. Thus Robert Zubrin talks about how we might detect a magsail, or an antimatter engine, or a fusion-powered spacecraft, but he’s careful to note that the kind of concepts once studied by the Breakthrough Propulsion Physics Project at NASA may be undetectable, since we really don’t know what’s possible and what its signature might be.

I mentioned zero-point energy in a previous post because Zubrin likewise mentions it, an idea that would draw from the energy of the vacuum at the quantum level. Would a craft using such energies — if it’s even possible — leave a detectable signal? I’ve never seen a paper on this, but it’s true that one classic paper has looked at another truly exotic mechanism for interstellar travel, the wormhole. These shortcuts through spacetime make space travel a snap. Because they connect one part of the universe to another, you go in one end and come out the other, emerging into another place and, for all we know, another time.

The fact that we don’t know whether wormholes exist doesn’t mean we can’t think about how to detect one, although the authors of the classic paper on wormhole detection make no assumptions about whether or not any intelligent species would actually be using a wormhole. The paper is “Natural Wormholes as Gravitational Lenses,” and it’s no surprise to find that its authors are not only wormhole specialists like Matt Visser and Michael Morris, but physicists with a science fiction connection like John Cramer, Geoffrey Landis, Gregory Benford and the formidable Robert Forward.

Image: A wormhole presents a shortcut through spacetime. Can one be detected? Credit: Wikimedia Commons.

The analysis assumes that the mouth of a wormhole would accrete mass, which would give the other mouth a net negative mass that would behave in gravitationally unusual ways. Thus the GNACHO (gravitationally negative anomalous compact halo object), which playfully echoes the acronym for massive compact halo objects (MACHOs). Observationally, we can look for a gravitational lensing signature that will enhance background stars by bending light in a fundamentally different way than what a MACHO would do. And because we have MACHO search data available, the authors propose checking them for a GNACHO signature.

In conventional gravitational lensing, when a massive object moves between you and a much more distant object, a greatly magnified and distorted image of the distant object can be seen. Gravitational lensing like this has proven a useful tool for astrophysicists and has also been a means of exoplanet detection. But when a wormhole moves in front of another star, it should de-focus the light and dim it. And as the wormhole continues to move in relation to the background star, it should create a sudden spike of light. The signature, then, is two spikes with a steep lowering of light between them.

The authors think we might find the first solid evidence for the existence of a wormhole in our data by looking for such an event, saying “…the negative gravitational lensing presented here, if observed, would provide distinctive and unambiguous evidence for the existence of a foreground object of negative mass.” And it goes without saying that today’s astronomy, which collects information at a rate far faster than it can be analyzed, might have such evidence tucked away in computer data waiting to be discovered by the right search algorithms.

Would a wormhole be a transportation device? Nobody knows. Assuming we discover a wormhole one day, it would likely be so far away that we wouldn’t be able to get to it to examine its possibilities. But it’s not inconceivable that a sufficiently advanced civilization might be able to create an artificial wormhole, creating a network of spacetime shortcuts for instantaneous travel. Matt Visser has discussed a wormhole whose mouth would be held open by negative energy, ‘…a flat-space wormhole mouth framed by a single continuous loop of exotic cosmic string.’ A primordial wormhole might survive from the early universe. Could one also be created by technology?

It is my theory that if we do not build worm-holes — our AI partners, and/or successors will be able to invent and construct them.

So that begs the question — “Are flying saucers constructed by biological beings, or AI/cybernetic creatures?”

Exotic Detections: Wormholes and Worldships

Snowflake UFO

From Gather.com:

An amazing UFO video has been posted to YouTube showing what is described as a “snowflake” mothership dropping light balls over an unidentified area of South America. What is it?

In the video, taken at night, a man, speaking Spanish, is amazed by the sight of a lighted ship hovering over what looks like a farmhouse. The craft is shaped like a giant snowflake and appears to be throwing off smaller lighted orbs. It’s not like anything ever filmed before.

An interpretation provided by commenters on the channel is not really necessary, since the man’s amazement is understood in any language. But his family comes for a look and are amazed as well.

There’s just no way to describe this amazing UFO which defies explanation and does not appear to be a CGI hoax. At the end of the video, a separate segment renders the image in what looks like the infrared spectrum and the light balls dropping from the craft are more easily seen.

It’s just incredible.

I’m reminded of the Cordwainer Smith story “The Burning of the Brain” in which the starship is shaped like an old Southern manor. Starships in this far future time are held together by force-fields, not metal. Thus there is no need for pressure or vacuum hulls. The description of the UFO by the witness and its unorthodox shape is no surprise if the craft is built by a highly advanced space-faring civilization.

http://youtu.be/2a1YFYrpRtE

‘Snowflake’ UFO Drops Light Balls over South America