Category Archives: asteroid mining

Carl Sagan and the U.S. Military


News of Carl Sagan’s involvement with a plan to “nuke” the moon, Project A119, has become relevant again. In fact, Sagan was involved in a number of military causes during his all-too-short lifetime. But later, he cut all ties with the military. Here’s what happened.

Carl Sagan spent his childhood under the ominous cloud of World War II. As the war faded and the United States and USSR entered a Cold War, the United States once again looked to its best and brightest — including many academic scientists — to consult with the military.

Sagan’s extremely limited involvement in a theoretical plan to “Nuke the Moon” as a show of U.S. military might recently caused an uproar, but this was just one aspect of Sagan’s involvement with the militarily. Sagan’s involvement in Project A-119 occurred while he worked toward his Ph.D. at the University of Chicago. The good scientist actually broke personnel restrictions placed on the classified project by listing his involvement on a job application.

Sagan and Project Blue Book The majority of Sagan’s contact with the military came as a member of the Air Force Scientific Advisory Board beginning in 1966. Sagan lectured at Harvard at this time in his life, but would soon depart to become Associate Professor of Astronomy in the Center for Radiophysics and Space Research at Cornell after being denied tenure by Harvard.

At this time in his career, Sagan had already begun to publish his suppositions about the atmosphere of Venus and became a member of the fringe in the eyes of many thanks to his ruminations on the possibility of intelligent life in the universe. Sagan also played a role in advising the U.S. Space Program, a program synonymous with military applications during the Cold War era.

Sagan allegedly received $800 per day (roughly $4500 in current dollars), an astounding sum for a university lecturer, to act as a consultant for the Air Force Scientific Advisory Board. The United States Air Force Scientific Advisory Board began in 1944 as a secret program with a variety of missions, including determining the possibility of using atomic energy in jet propulsion as well as non-traditional use of nuclear weapons.

Sagan’s military contact revolved around Project Blue Book, a 23-year study of UFOs conducted by the United States Air Force that ceased in January of 1970. Project Blue Book took a systematic approach to the study of unidentified flying objects, analyzing possible UFO data and aiming to determine if these objects were a danger to United States national security.

Within the two-decade-plus report are 12,618 “sightings”, with analysis leaving a mere 700 classified as unidentified. The Air Force Scientific Advisory Board, however concluded that Project Blue Book did not meet necessary rigors, suggesting a university-led study of unidentified flying objects would be far more conclusive.

Separation from the military After the closure of Project Blue Book, Sagan continued to act as a prominent scientific advisor for NASA, arguing for the financial merit of robotic spacecraft.

Sagan became an extremely vocal advocate against nuclear proliferation after the rise of President Reagan’s Strategic Defense Initiative. Sagan openly protested the testing of nuclear weapons, with the sage arrested for trespassing after a 1986 underground detonation of a thermonuclear warhead in the Nevada desert.

Though he cut ties with the military, Sagan continued to ponder the idea of space war. He concocted the Deflection Dilemma — the idea that the using a significant blast to knock a near earth object on a trajectory towards earth off course could also be used as a weapon, sending the object into the country or countries of choice.

If you are curious, you can lose an entire weekend and browse through the entirety of Project Blue Book online thanks to the Project Blue Book Archive, or have a marathon of Twin Peaks to catch a hint of the intrigue surrounded Project Blue Book.

The idea of blowing up the Moon seems far-fetched, but not knocking an asteroid into an orbit that intercepts a certain country(s) and wreaks destruction over one side of the planet. It’s the ultimate Dooms-Day Device!

That’s why I don’t think NASA’s plan of flying to an asteroid in 2025 and Planetary Resources’ idea of asteroid capture and mining will be politically viable or palatable in the international arena because if a country that has the technology to move planetary objects into different orbits, especially in Earth orbit has the ultimate weapon over other nations in the form of a huge hammer.

And I’m really surprised this isn’t mentioned at various mainstream space sites.

Maybe it’s an unmentionable thing?

What Exactly Was Carl Sagan Working on with the U.S. Military?

Moon Water


A crater on the moon that is a prime target for human exploration may be tantalizingly rich in ice, though researchers warn it could just as well hold none at all.

The scientists investigated Shackleton Crater, which sits almost directly on the moon’s south pole. The crater, named after the Antarctic explorer Ernest Shackleton, is more than 12 miles wide (19 kilometers) and 2 miles deep (3 km) — about as deep as Earth’s oceans.

The interiors of polar craters on the moon are in nearly perpetual darkness, making them cold traps that researchers have long suspected might be home to vast amounts of frozen water and thus key candidates for human exploration. However, previous orbital and Earth-based observations of lunar craters have yielded conflicting interpretations over whether ice is there.

For instance, the Japanese spacecraft Kaguya saw no discernible signs of ice within Shackleton Crater, but NASA’s LCROSS probe analyzed Cabeus Crater near the moon’s south pole and found it measured as much as 5 percent water by mass. [Photos: Searching for Water on the Moon]

Now scientists who have mapped Shackleton Crater with unprecedented detail have found evidence of ice inside the crater.

NASA’s Lunar Reconnaissance Orbiter essentially illuminated the crater’s interior with infrared laser light, measuring how reflective it was. The crater’s floor is more reflective than that of other nearby craters, suggesting it had ice.

“Water ice in amounts of up to 20 percent is a viable possibility,” study lead author Maria Zuber, a geophysicist at the Massachusetts Institute of Technology, told

Don’t get your hopes up, though. The amount of ice in Shackleton Crater “can also be much less, conceivably as little as zero,” Zuber cautioned.

This uncertainty is due in part to what the researchers saw in the rest of the crater. Bizarrely, while the crater’s floor was relatively bright, Zuber and her colleagues observed that its walls were even more reflective.

Scientists had thought that if highly reflective ice were anywhere in a crater, it would be on the floor, which live in nearly permanent darkness. In comparison, the walls of Shackleton Crater occasionally see daylight, which should evaporate any ice that accumulates.

The researchers think the reflectance of the crater’s walls is due not to ice, but to quakes. Every once in a while, the moon experiences shaking brought on by meteor collisions or the pull of the Earth. These “moonquakes” may have caused Shackleton’s walls to slough off older, darker soil, revealing newer, brighter soil underneath.

Whether or not the crater floor is brightly reflective due to ice or other factors is also open to question.

Shackleton Crater Relief Split View

This split-view image shows an elevation map (left) and shaded relief (right) of the 21-kilometer-wide Shackleton Crater. The crater’s structure is shown in false color from data by NASA’s LRO probe. Image released June 20, 2012. CREDIT: NASA/GSFC/SVS

“The reflectance could be indicative of something else in addition to or other than water ice,” Zuber said. For instance, the crater floor might be reflective because it could have had relatively little exposure to solar and cosmic radiation that would have darkened it.

Zuber noted that the measurements only look at a micron-thick portion of Shackleton Crater’s uppermost layer. “A bigger question is how much water might be buried at depth,” Zuber said, adding that NASA’s GRAIL mission will investigate that possibility.

The researchers also used the orbiter to map the crater’s floor and the slope of its walls. This topographic map will help shed light on crater formation and study other uncharted areas of the moon.

“We would like to study other lunar polar craters in comparable detail,” Zuber said. “There is much to be learned here.”

Huge Moon Crater’s Water Ice Supply Revealed

What does all this mean? Will the current occupants of the Moon share the water with us humans?

I wouldn’t bet on it.

We’re being relegated to catching asteroids.

Finally, Money to be made in Deep Space?

From DailyFinance:

In the 1981 film Outland, Sean Connery stars as an old-school lawman who keeps order in a mining colony on one of Jupiter’s moons, armed only with his wits and a trusty Browning 2000 shotgun. Outland is set in a future that has commercial space travel and off-planet mining, and the latter took a giant leap forward into reality last week when the private company Planetary Resources announced its plan to start mining asteroids in just more than 10 years’ time.

While the space industry isn’t easily accessible to private investors, its prospects mean that one day the sector will become the toast of the stock market. So it’s something I keep an eye on, as I believe it will present some great opportunities in the future.

Money from satellites A few public companies have major interests in space, and the one that immediately springs to mind is the satellite communications specialist Inmarsat. Britain’s largest pay-television operator, British Sky Broadcasting  (ISE: BSY.L) , is another company that relies heavily upon space; without its satellites, it would lose most of its business.

Many defense contractors, such as Boeing  (NYS: BA)  and Raytheon  (NYS: RTN) , also have substantial satellite operations, though much of this business is military and therefore under pressure as national budgets are squeezed. Then there are the firms that provide commercial images from satellites, such as DigitalGlobe and RapidEye.

But so far the space industry is pretty much limited to satellites and getting them into orbit. I believe the real excitement will be found in the new industries that are starting to spring up — in particular mining, space tourism, and zero-gravity manufacturing.

Back to the mining Planetary Resources has a star-filled shareholders’ register, which contains names like Larry Page and Eric Schmidt of Google  (NAS: GOOG)  and the film director James Cameron. While its asteroid-mining plan seems to be the stuff of science-fiction, and there are many technological obstacles to be overcome before it is practical, it makes good business sense, because those metals that are rare on Earth are generally much more plentiful in space.

While the vast majority of asteroids are to be found in the asteroid belt that lies between Mars and Jupiter, we know of at least 9,000 near-Earth asteroids that sometimes come close to our planet. These are Planetary Resources’ main targets, and at the top of the list are those that were produced by collisions between “planetesimals” — the bodies that combined to form planets in the early history of the solar system.

The reason for preferring these asteroids over the other main type of asteroid — those formed from the accretion of small bits of material — is that they contain vastly more metal. They also will not have undergone the same geological processes that occurred on Earth over billions of years, so their rare metals — including gold, platinum and iridium — will be more uniformly distributed.

In contrast, metals in the earth are disproportionately located within the mantle and core — well below the crust where we mine — because of the planetary formation process that stratified the earth into three distinct regions: core, mantle, and crust.

The economics of space mining Planetary Resources plans to launch several space telescopes in 2014 that will search for suitable near-Earth asteroids. These may be mined where they are or hauled back to Earth or lunar orbit for later dissection, but in any case the mining will likely be done by robots.

Of course, this is very expensive, and the Keck Institute for Space Studies has estimated that it would cost around 1.6 billion pounds just to bring a single 500-tonne asteroid back to the moon for mining. That’s before the cost of setting up the venture in the first place, which will probably run to more than 50 billion pounds.

Another problem is that rare metals go for high prices because they are, well, rare. So if these robot miners start to extract large quantities of them from asteroids, this would drive down their price.

Fly me to the moon Commercial space travel is much closer than you may think. Leading the pack is Richard Branson’s Virgin Galactic, which has already sold more than 500 tickets for rides in SpaceShipTwo, on course to make its first commercial suborbital flight next year. If you fancy a ride, a ticket will set you back a cool $200,000.

Branson doesn’t have the field to himself, as there are several other companies also planning to take fee-paying passengers into space, such as Blue Origin (founded in 2000 by Jeff Bezos of  (NAS: AMZN)  fame), Space Adventures, and SpaceX.

The new manufacturing frontier Outer space offers two environments that are not easy to create on Earth: low gravity and hard vacuum. This holds great promise for manufacturing special objects such as perfect spheres and certain types of alloy.

Another field that will benefit is medical research, because purer protein crystals can be grown in space, as the distorting effects of gravity will have been removed.

Numerous experiments have already been performed on the International Space Station and space shuttles, so we know that the technology works and is available. As with most things, it all boils down to cost.

Space to invest? My gut feeling when looking at businesses that depend upon high technology is to steer well clear. That’s because the technology industry is notorious for seeing a dominant market leader overtaken by a rival with a better product.

Remember when Friends Reunited and MySpace were the big social networks? Nowadays they’re also-rans when compared to Facebook, which in turn has become yet another giant with the competition nipping at its heels.

That said, the space industry has tremendous barriers to entry. Launching stuff into space isn’t cheap, and first-mover advantage will count for a lot in this sector. After all, if a company already has a multibillion-pound manufacturing facility in orbit, then this will put off some of the competition. Sooner or later, big money is going to be made in outer space. It just may take some time.

Now mainstream space is realizing the dream of us nerds from so long ago.

Somewhere, Gerard K. O’Neill smiles knowingly.

Making Money in Outer Space

Dr. Diamandis to announce space project

From Kurtzweil AI:

Dr. Peter Diamandis has announced a live webcast of the company’s announcement at 10:30 a.m. PDT Tuesday April 24 of a “new space venture with the mission to help ensure humanity’s prosperity.”

Somewhere Robert Heinlein smiles knowingly.

Hat tip to the Daily Grail .