The Interstellar Mind of Robert Goddard
From Centauri Dreams:
Astronautics pioneer Robert H. Goddard is usually thought of in connection with liquid fuel rockets. It was his test flight of such a rocket in March of 1926 that demonstrated a principle he had been working on since patenting two concepts for future engines, one a liquid fuel design, the other a staged rocket using solid fuels. “A Method of Reaching Extreme Altitudes,” published in 1920, was a treatise published by the Smithsonian that developed the mathematics behind rocket flight, a report that discussed the possibility of a rocket reaching the Moon.
While Goddard’s work could be said to have anticipated many technologies subsequently developed by later engineers, the man was not without a visionary streak that went well beyond the near-term, expressing itself on at least one occasion on the subject of interstellar flight. Written in January of 1918, “The Ultimate Migration” was not a scientific paper but merely a set of notes, one that Goddard carefully tucked away from view, as seen in this excerpt from his later document “Material for an Autobiography” (1927):
“A manuscript I wrote on January 14, 1918 … and deposited in a friend’s safe … speculated as to the last migration of the human race, as consisting of a number of expeditions sent out into the regions of thickly distributed stars, taking in a condensed form all the knowledge of the race, using either atomic energy or hydrogen, oxygen and solar energy… [It] was contained in an inner envelope which suggested that the writing inside should be read only by an optimist.”
Optimism is, of course, standard currency in these pages, so it seems natural to reconsider Goddard’s ideas here. As to his caution, we might remember that the idea of a lunar mission discussed in “A Method of Reaching Extreme Altitudes” not long after would bring him ridicule from some elements in the press, who lectured him on the infeasibility of a rocket engine functioning in space without air to push against. It was Goddard, of course, who was right, but he was ever a cautious man, and his dislike of the press was, I suspect, not so much born out of this incident but simply confirmed by it.
In the event, Goddard’s manuscript remained sealed and was not published until 1972. What I hadn’t realized was that Goddard, on the same day he wrote the original manuscript, also wrote a condensed version that David Baker recently published for the British Interplanetary Society. It’s an interesting distillation of the rocket scientist’s thoughts that speculates on how we might use an asteroid or a small moon as the vehicle for a journey to another star. The ideal propulsion method would, in Goddard’s view, be through the control of what he called ‘intra-atomic energy.’
Image: Rocket pioneer Robert H. Goddard, whose notes on an interstellar future discuss human migration to the stars.
Atomic propulsion would allow journeys to the stars lasting thousands of years with the passengers living inside a generation ship, one in which, he noted, “the characteristics and natures of the passengers might change, with the succeeding generations.” We’ve made the same speculation here, wondering whether a crew living and dying inside an artificial world wouldn’t so adapt to the environment that it would eventually choose not to live on a planetary surface, no matter what it found in the destination solar system.
And if atomic energy could not be harnessed? In that case, Goddard speculated that humans could be placed in what we today would think of as suspended animation, the crew awakened at intervals of 10,000 years for a passage to the nearest stars, and intervals of a million years for greater distances. Goddard speculates on how an accurate clock could be built to ensure awakening, which he thought would be necessary for human intervention to steer the spacecraft if it came to be off its course. Suspended animation would involve huge changes to the body:
…will it be possible to reduce the protoplasm in the human body to the granular state, so that it can withstand the intense cold of interstellar space? It would probably be necessary to dessicate the body, more or less, before this state could be produced. Awakening may have to be done very slowly. It might be necessary to have people evolve, through a number of generations, for this purpose.
As to destinations, Goddard saw the ideal as a star like the Sun or, interestingly, a binary system with two suns like ours — perhaps he was thinking of the Alpha Centauri stars here. But that was only the beginning, for Goddard thought in terms of migration, not just exploration. His notes tell us that expeditions should be sent to all parts of the Milky Way, wherever new stars are thickly clustered. Each expedition should include “…all the knowledge, literature, art (in a condensed form), and description of tools, appliances, and processes, in as condensed, light, and indestructible a form as possible, so that a new civilisation could begin where the old ended.”
The notes end with the thought that if neither of these scenarios develops, it might still be possible to spread our species to the stars by sending human protoplasm, “…this protoplasm being of such a nature as to produce human beings eventually, by evolution.” Given that Goddard locked his manuscript away, it could have had no influence on Konstantin Tsiolkovsky’s essay “The Future of Earth and Mankind,” which in 1928 speculated that humans might travel on millennial voyages to the stars aboard the future equivalent of a Noah’s Ark.
Interstellar voyages lasting thousands of years would become a familiar trope of science fiction in the ensuing decades, but it is interesting to see how, at the dawn of liquid fuel rocketry, rocket pioneers were already thinking ahead to far-future implications of the technology. Goddard was writing at a time when estimates of the Sun’s lifetime gave our species just millions of years before its demise — a cooling Sun was a reason for future migration. We would later learn the Sun’s lifetime was much longer, but the migration of humans to the stars would retain its fascination for those who contemplate not only worldships but much faster journeys.
Goddard was obviously influenced by his contemporary J.D. Bernal with his The World, the Flesh and the Devil which predicted Man’s spread out into the Solar System and interstellar space with artificial worlds and hollowed out asteroids.
These worlds are needed because such journeys will take hundreds or perhaps thousands of years.
Of course that brings in natural evolution and what these people inside these places will become when they eventually reach their destinations and if they’ll actually have need of them.
Robert Goddard’s Interstellar Migration
Advanced Oort Cloud Civilisations?
From Centauri Dreams:
Jules Verne once had the notion of a comet grazing the Earth and carrying off a number of astounded people, whose adventures comprise the plot of the 1877 novel Off on a Comet. It’s a great yarn that was chosen by Hugo Gernsback to be reprinted as a serial in the first issues of his new magazine Amazing Stories back in 1926, but with a diameter of 2300 kilometers, Verne’s comet was much larger than anything we’ve actually observed. Comets tend to be small but they make up for it in volume, with an estimated 100 billion to several trillion thought to exist in the Oort Cloud. All that adds up to a total mass of several times the Earth’s.
Of course, coming up with mass estimates is, as with so much else about the Oort Cloud, a tricky business. Paul R. Weissman noted a probable error of about one order of magnitude when he produced the above estimate in 1983. What we are safe in saying is something that has caught Freeman Dyson’s attention: While most of the mass and volume in the galaxy is comprised of stars and planets, most of the area actually belongs to asteroids and comets. There’s a lot of real estate out there, and we’ll want to take advantage of it as we move into the outer Solar System and beyond.
Comets and Resources
Embedded with rock, dust and organic molecules, comets are composed of water ice as well as frozen gases like methane, carbon dioxide, carbon monoxide, ammonia and an assortment of compounds containing nitrogen, oxygen and sulfur. Porous and undifferentiated, these bodies are malleable enough to make them interesting from the standpoint of resource extraction. Richard P. Terra wrote about the possibilities in a 1991 article published in Analog:
This light fragile structure means that the resources present in the comet nuclei will be readily accessible to any human settlers. The porous mixture of dust and ice would offer little mechanical resistance, and the two components could easily be separated by the application of heat. Volatiles could be further refined through fractional distillation while the dust, which has a high content of iron and other ferrous metals, could easily be manipulated with magnetic fields.
Put a human infrastructure out in the realm of the comets, in other words, and resource extraction should be a workable proposition. Terra talks about colonies operating in the Oort Cloud but we can also consider it, as he does, a proving ground for even deeper space technologies aimed at crossing the gulf between the stars. Either way, as permanent settlements or as way stations offering resources on millennial journeys, comets should be plentiful given that the Oort Cloud may extend half the distance to Alpha Centauri. Terra goes on:
Little additional crushing or other mechanical processing of the dust would be necessary, and its fine, loose-grained structure would make it ideal for subsequent chemical processing and refining. Comet nuclei thus represent a vast reservoir of easily accessible materials: water, carbon dioxide, ammonia, methane, and a variety of metals and complex organics.
Energy by Starlight
Given that comets probably formed on the outer edges of the solar nebula, their early orbits would have been more or less in the same plane as the rest of the young system, but gravitational interactions with passing stars would have randomized their orbital inclinations, eventually producing a sphere of the kind Jan Oort first postulated back in 1950. Much of this is speculative, because we have little observational evidence to go on, but the major part of the cometary shell probably extends from 40,000 to 60,000 AU, while a projected inner Oort population extending from just beyond the Kuiper Belt out to 10,000 AU may have cometary orbits more or less in the plane of the ecliptic. Out past 10,000 AU the separation between comets is wide, perhaps about 20 AU, meaning that any communities that form out here will be incredibly isolated.
Image: An artist’s rendering of the Kuiper Belt and Oort Cloud. Credit: NASA/Donald K. Yeomans.
Whether humans can exploit cometary resources this far from home will depend on whether or not they can find sources of energy. In a paper called “Fastships and Nomads,” presented at the Conference on Interstellar Migration held at Los Alamos in 1983, Eric Jones and Ben Finney give a nod to non-renewable energy sources like deuterium, given that heavy elements like uranium will be hard to come by. Indeed, a typical comet, in Richard Terra’s figures, holds between 50,000 and 100,000 metric tons of deuterium, enough to power early settlement and mining.
But over the long haul, Jones and Finney are interested in keeping colonies alive through renewable resources, and that means starlight. The researchers talk about building vast mirrors using aluminum from comets, with each 1 MW mirror about the size of the continental United States. Now here’s a science fiction setting with punch, as the two describe it:
Although the mirrors would be tended by autonomous maintenance robots, the nomads would have to live nearby in case something went wrong… Although we could imagine that the several hundred people who could be supported by the resources of a single comet might live in a single habitat, the mirrors supporting that community would be spread across about 150,000 km. Trouble with a mirror or robot on the periphery of the mirror array would mean a long trip, several hours at least. It would make more sense if the community were dispersed in smaller groups so that trouble could be reached in a shorter time. There are also social reasons for expecting the nomad communities to be divided into smaller co-living groups.
Jones and Finney go on to point out that humans tend to work best in groups of about a dozen adults, whether in the form of hunter/gatherer bands, army platoons, bridge clubs or political cells. This observation of behavior leads them to speculate that bands of about 25 men, women and children would live together in a large habitat — think again of an O’Neill cylinder — built out of cometary materials, from which they would tend a mirror farm with the help of robots and computers. Each small group would tend a mirror farm perhaps 30,000 kilometers across.
The picture widens beyond this to include the need for larger communities that would occasionally come together, helping to avoid the genetic dangers of inbreeding and providing a larger social environment. Thus we might have about 500 individuals in clusters of 20 cometary bands which would stay in contact and periodically meet. Jones and Finney consider the band-tribe structure to be the smallest grouping that seems practical for any human community. Who would such a community attract — outcasts, dissidents, adventurers? And how would Oort Cloud settlers react to the possibility of going further still, to another star?
While by no means is this is a new theory, ( note the Jules Verne story ), it presents the scenario of the very slow spreading of intelligent biological life through-out the Galaxy ( see Slow Galactic Colonization, Zoo Hypothesis and the Fermi Paradox ).
Now here’s a thought; could a potential alien Oort Cloud civilization be the basis of the Ancient Astronaut Theory and the legends of the Sumerian Gods, the Anunnaki?
There’s no hard evidence of that of course, but there are Pluto-sized and larger objects in the Kuiper Belt glowing in the infrared, a sign that was said to represent a Dyson Sphere type civilisation.
Either these are natural objects such as Brown Dwarf stars, or potential alien civilisations whom don’t care whether they are detected in the infrared or not.
And that’s disturbing.
Of SETI, ET Cultural Contact and Spam
From Centauri Dreams:
What happens to us if our SETI efforts pay off? Numerous scenarios come to mind, all of them speculative, but the range of responses shown in Carl Sagan’s Contact may be something like the real outcome, with people of all descriptions reading into a distant message whatever they want to hear. Robert Lightfoot (South Georgia State College) decided to look at contact scenarios we know something more about, those that actually happened here on Earth. His presentation in Huntsville bore the title “Sorry, We Didn’t Mean to Break Your Culture.”
Known as ‘Sam’ to his friends, Lightfoot is a big, friendly man with an anthropologist’s eye for human nature. His talk made it clear that if we’re going to plan for a possible SETI reception, we should look at what happens when widely separated groups come into contact. Cultural diffusion can happen in two ways, the first being prompted by the exchange of material objects. In the SETI case, however, the non-material diffusion of ideas is the most likely outcome. Lightfoot refers to ‘objects of cultural destruction’ in both categories, noting the distorting effect these can have on a society as unexpected effects invariably appear.
Consider the introduction of Spam to the islands of the Pacific as a result of World War II. The level of obesity, cancer and diabetes soared as cultures that had relied largely on hunting, farming and fishing found themselves in the way of newfound supplies. Visitors to some of these islands still note with curiosity that Spam can be found on the menus of many restaurants. Today more than half of all Pacific islanders are obese, and one in four has diabetes. On the island nation of Tonga, fully 69 percent of the population is considered obese.
Lightfoot mentioned Tonga in his talk, but I drew the above figures from the World Diabetes Foundation. Can we relate the continuing health problems of the region to Spam? Surely it was one of the triggers, but we can also add that the large-scale industrialization of these islands didn’t begin until the 1970s. Imported food and the conversion of farmland to mining and other industries (Nauru is the classic example, with its land area almost entirely devoted to phosphate mining) meant a change in lifestyle that was sudden and has had enormous health consequences.
Objects of cultural destruction (OCDs) show their devastating effects around the globe. The Sami peoples of Finland had to deal with the introduction of snowmobiles, which you would have thought a blessing for these reindeer herders. But the result was the ability to collect far larger herds than ever before, which in turn has resulted in serious problems of over-grazing. Or consider nutmeg, once thought in Europe to be a cure for the plague, causing its value to soar higher than gold. Also considered an aphrodisiac, nutmeg led to violence against native growers in what is today Indonesia and played a role in the creation of the East India Company.
But because SETI’s effects are most likely going to be non-material, Lightfoot homed in on precedents like the ‘cargo cults’ of the Pacific that sprang up as some islanders tried to imitate what they had seen Westerners do, creating radios out of wood, building ‘runways’ and calling for supplies. In South Africa, a misunderstanding of missionary religious teachings led the Xhosa people to kill their cattle, even though their society was based on herding these animals. Waiting for a miracle after the killings, a hundred thousand people began to starve. Said Lightfoot:
Think about contact with an extraterrestrial civilization in this light. There will be new ideas galore, even the possibility of new objects — plants, animals, valuable jewels. Any or all of these could be destabilizing to our culture. And just as they may destabilize us, we may contaminate them.
I think the most powerful message of Lightfoot’s talk was that this kind of destabilization can come where you would least expect it, and have irrevocable results. Tobacco, once used as a part of ritual ceremonies in the cultures where it grew, has become an object of cultural and medical destruction in our far more affluent society. Even something as innocuous as a tulip once became the object of economic speculation so intense that it created an economic bubble in 17th Century Holland and an ensuing economic panic.
What to do? Lightfoot told the crowd to search history for the lessons it contains about cultures meeting for the first time. We need to see when and why things went wrong in hopes of avoiding similar situations. If contact with an extraterrestrial culture someday comes, we’ll need a multidisciplinary approach to identify the areas where trouble is most likely to occur. A successful SETI reception could be the beginning of a philosophical and scientific revolution, or it could be the herald of cultural decline as we try to re-position our thinking about the cosmos.
I don’t think the radio searches of SETI will produce anything; there’s a better chance that UFOs are ET spacecraft and eventually black ops corporations will reveal that they’ve been back engineering their hardware for years.
That being said, on the off chance that ET contact does happen, in any form, cultural cross contamination is bound to happen. Whether some cargo cults will form because of contact is moot, because in my opinion, that’s how the world’s religions were formed in the past.
The Eerie Silence and Machine Intelligences
From The Daily Galaxy:
The species that you and all other living human beings on this planet belong to is Homo sapiens. During a time of dramatic climate change 200,000 years ago,Homo sapiens (modern humans) evolved in Africa. Is the human species entering another evolutionary inflection point?
Paul Davies, a British-born theoretical physicist, cosmologist, astrobiologist and Director of the Beyond Center for Fundamental Concepts in Science and Co-Director of the Cosmology Initiative at Arizona State University, says in his new book The Eerie Silence that any aliens exploring the universe will be AI-empowered machines. Not only are machines better able to endure extended exposure to the conditions of space, but they have the potential to develop intelligence far beyond the capacity of the human brain.”I think it very likely – in fact inevitable – that biological intelligence is only a transitory phenomenon, a fleeting phase in the evolution of the universe,” Davies writes. “If we ever encounter extraterrestrial intelligence, I believe it is overwhelmingly likely to be post-biological in nature.”
Before the year 2020, scientists are expected to launch intelligent space robots that will venture out to explore the universe for us.
“Robotic exploration probably will always be the trail blazer for human exploration of far space,” says Wolfgang Fink, physicist and researcher at Caltech. “We haven’t yet landed a human being on Mars but we have a robot there now. In that sense, it’s much easier to send a robotic explorer. When you can take the human out of the loop, that is becoming very exciting.”
As the growing global population continues to increase the burden on the Earth’s natural resources, senior curator at the Smithsonian National Air and Space Museum, Roger Launius, thinks that we’ll have to alter human biology to prepare to colonize space.
In the September issue of Endeavour, Launius takes a look at the historical debate surrounding human colonization of the solar system. Experiments have shown that certain life forms can survive in space. Recently, British scientists found that bacteria living on rocks taken from Britain’s Beer village were able to survive 553 days in space, on the exterior of the International Space Station (ISS). The microbes returned to Earth alive, proving they could withstand the harsh environment.
Humans, on the other hand, are unable to survive beyond about a minute and a half in space without significant technological assistance. Other than some quick trips to the moon and the ISS, astronauts haven’t spent too much time too far away from Earth. Scientists don’t know enough yet about the dangers of long-distance space travel on human biological systems. A one-way trip to Mars, for example, would take approximately six months. That means astronauts will be in deep space for more than a year with potentially life-threatening consequences.
Launius, who calls himself a cyborg for using medical equipment to enhance his own life, says the difficult question is knowing where to draw the line in transforming human biological systems to adapt to space. Credit: NASA/Brittany Green
“If it’s about exploration, we’re doing that very effectively with robots,” Launius said. “If it’s about humans going somewhere, then I think the only purpose for it is to get off this planet and become a multi-planetary species.”
Stephen Hawking agrees: “I believe that the long-term future of the human race must be in space,” Hawking told the Big Think website in August. “It will be difficult enough to avoid disaster on planet Earth in the next hundred years, let alone the next thousand, or million. The human race shouldn’t have all its eggs in one basket, or on one planet.”
If humans are to colonize other planets, Launius said it could well require the “next state of human evolution” to create a separate human presence where families will live and die on that planet. In other words, it wouldn’t really be Homo sapien sapiens that would be living in the colonies, it could be cyborgs—a living organism with a mixture of organic and electromechanical parts—or in simpler terms, part human, part machine.
“There are cyborgs walking about us,” Launius said. “There are individuals who have been technologically enhanced with things such as pacemakers and cochlea ear implants that allow those people to have fuller lives. I would not be alive without technological advances.”
The possibility of using cyborgs for space travel has been the subject of research for at least half a century. A seminal article published in 1960 by Manfred Clynes and Nathan Kline titled “Cyborgs and Space” changed the debate, saying that there was a better alternative to recreating the Earth’s environment in space, the predominant thinking during that time. The two scientists compared that approach to “a fish taking a small quantity of water along with him to live on land.” They felt that humans should be willing to partially adapt to the environment to which they would be traveling.
“Altering man’s bodily functions to meet the requirements of extraterrestrial environments would be more logical than providing an earthly environment for him in space,” Clynes and Kline wrote.
“It does raise profound ethical, moral and perhaps even religious questions that haven’t been seriously addressed,” Launius said. “We have a ways to go before that happens.”
Some experts such as medical ethicist Grant Gillett believe that the danger is that we might end up producing a psychopath because we don’t quite understand the nature of cyborgs.
NASA, writes Lauris, still isn’t focusing much research on how to improve human biological systems for space exploration. Instead, its Human Research Program is focused on risk reduction: risks of fatigue, inadequate nutrition, health problems and radiation. While financial and ethical concerns may have held back cyborg research, Launius believes that society may have to engage in the cyborg debate again when space programs get closer to launching long-term deep space exploration missions.
“If our objective is to become space-faring people, it’s probably going to force you to reconsider how to reengineer humans,’ Launius said.
SETI and the Targeted Search For ET Civilizations
From io9.com:
In what is its most targeted search to date, the SETI Institute has scanned 86 potentially habitable solar systems for signs of radio signals. Needless to say, the search came up short (otherwise the headline of this article would have been dramatically different), but the initiative is finally offering some quantitative data about the rate at which we can expect to find radio-emitting intelligent life on Earth-like planets — a rate that’s proving to be disturbingly low.
Indeed, by the end of its survey, SETI calculated that less than one-percent of all potentially habitable exoplanets are likely to host intelligent life. That means less than one in a million stars in the Milky Way currently host radio-emitting civilizations that we can detect.
A narrow-band search
The SETI researchers, a team that included Jill Tarter and scientists at the University of California, Berkeley, reached this conclusion after scanning 86 different stars using the Green Bank Telescope in West Virginia. These stars were chosen because earlier Kepler data indicated they host potentially habitable planets — Earth-like planets that sit inside their sun’s habitable zone.
As for the radio bands searched, SETI looked for signals in the 1-2 GHz range, a band that’s used here on Earth for such things as cell phones and television transmissions. SETI also constrained the search to radio emissions less than 5Hz of the spectrum; nothing in nature is known to produce such narrow band signals.
Each of the 86 stars — the majority of which are more than 1,000 light-years away — were surveyed for five minutes. Because of the extreme distances involved, the only signals that could have been detected were ones that were intentionally aimed in our direction — which would be a deliberate effort by ETIs to signal their presence (what’s referred to as Active SETI, or METI (Messages to ETIs)).
“No signals of extraterrestrial origin were found.” noted the researchers in the study.”[I]n the simplest terms this result indicates that fewer than 1% of transiting exoplanet systems are radio loud in narrow-band emission between 1-2 GHz.”
Wanted: Alternative signatures
Despite the nul result, SETI remains hopeful for the future. Scanning potentially habitable solar systems is a fantastic idea, and it’s likely the first of many such targeted searches. At the same time, however, SETI will have to expand upon its list of candidate signatures.
It has been proposed, for example, that SETI look for signs of Kardashev scale civilizations, and take a more Dysonian approach to their searches. Others have suggested that SETI look for laser pulses.
Indeed, the current strategy — that of looking for radio-emitting civilizations — is exceedingly limited. Even assuming we could detect signals from a radio-capable civilization within a radius of 1,000 light-years, the odds that it would be contemporaneous with us is mind-bogglingly low (the time it takes for radio signals to reach us notwithstanding).
And as we are discovering by virtue of our own technological development, the window of opportunity to detect a radio-transmitting civilization is quite short. Looking to the future, it’s more than reasonable to suggest that alternative signatures — whether they be transmitted deliberately or not — be considered.
This is something SETI is very aware of, and the researchers said so much in their paper:
Ultimately, experiments such as the one described here seek to firmly determine the number of other intelligent, communicative civilizations outside of Earth. However, in placing limits on the presence of intelligent life in the galaxy, we must very carefully qualify our limits with respect to the limitations of our experiment. In particular, we can offer no argument that an advanced, intelligent civilization necessarily produces narrow-band radio emission, either intentional or otherwise. Thus we are probing only a potential subset of such civilizations, where the size of the subset is difficult to estimate. The search for extraterrestrial intelligence is still in its infancy, and there is much parameter space left to explore.
The paper is set to appear in the Astrophysical Journal and can be found here.
I suppose this is the natural outreach of the Kepler planetary searches; to see if there are radio signals coming from some of these planets. But as Terence McKenna once said, “To search expectantly for a radio signal from an extraterrestrial source is probably as culture-bound a presumption as to search the galaxy for a good Italian restaurant.“
Words of wisdom. I think it’s a mistake to believe that civilizations will use radio to broadcast out into the Universe. Convergent theories of evolution aside, it’s not a proven fact that other intelligences would follow the same evolutionary path as humans and thus invent similar communication techniques.
Of course, time will tell.
SETI Conducts First Ever Targeted Search For Intelligent Life On Earth-Like Planets
Hat tip to the Daily Grail.
Artificial Life-Form Inventer Venter To Build Martian DNA Teleporter
From Technology Review:
Two high-profile entrepreneurs say they want to put a DNA sequencing machine on the surface of Mars in a bid to prove the existence of extraterrestrial life.
In what could become a race for the first extraterrestrial genome, researcher J. Craig Venter said Tuesday that his Maryland academic institute and his company, Synthetic Genomics, would develop a machine capable of sequencing and beaming back DNA data from the planet.
Separately, Jonathan Rothberg, founder of Ion Torrent, a DNA sequencing company, is collaborating on an effort to equip his company’s “Personal Genome Machine” for a similar task.
“We want to make sure an Ion Torrent goes to Mars,” Rothberg told Technology Review.
Although neither team yet has a berth on Mars rocket, their plans reflect the belief that the simplest way to prove there is life on Mars is to send a DNA sequencing machine.
“There will be DNA life forms there,” Venter predicted Tuesday in New York, where he was speaking at the Wired Health Conference.
Venter said researchers working with him have already begun tests at a Mars-like site in the Mojave Desert. Their goal, he said, is to demonstrate a machine capable of autonomously isolating microbes from soil, sequencing their DNA, and then transmitting the information to a remote computer, as would be required on an unmanned Mars mission. (Hear his comments in this video, starting at 00:11:01.) Heather Kowalski, a spokeswoman for Venter, confirmed the existence of the project but said the prototype system was “not yet 100 percent robotic.”
Meanwhile, Rothberg’s Personal Genome Machine is being adapted for Martian conditions as part of a NASA-funded project at Harvard and MIT called SET-G, or “the search for extraterrestrial genomes.”
Christopher Carr, an MIT research scientist involved in the effort, says his lab is working to shrink Ion Torrent’s machine from 30 kilograms down to just three kilograms so that it can fit on a NASA rover. Other tests, already conducted, have determined how well the device can withstand the heavy radiation it would encounter on the way to Mars.
NASA, whose Curiosity rover landed on Mars in August, won’t send another rover mission to the planet before at least 2018 (see “The Mars Rover Curiosity Marks a Technological Triumph“), and there’s no guarantee a DNA sequencing device would go aboard. “The hard thing about getting to Mars is hitting the NASA specifications,” says George Church, a Harvard University researcher and a senior member of the SET-G team. “[Venter] isn’t ahead of anyone else.”
Venter has a great idea here, but it reminds me of a certain movie in which sequencing alien DNA wasn’t such a great plan.
Species !
New Super Amplifier Can Be Used To Explore Nature
This news has been passed all over the InnerTubes this past weekend, a new micro-amplifier developed by CalTech that can be used for many applications because it can boost the signal of anything in the electromagnetic spectrum, no matter how weak:
“This amplifier will redefine what it is possible to measure,” says Jonas Zmuidzinas, Caltech’s Merle Kingsley Professor of Physics, the chief technologist at JPL, and a member of the research team. An amplifier is a device that increases the strength of a weak signal. “Amplifiers play a basic role in a wide range of scientific measurements and in electronics in general,” says Peter Day, a visiting associate in physics at Caltech and a principal scientist at JPL. “For many tasks, current amplifiers are good enough. But for the most demanding applications, the shortcomings of the available technologies limit us.” Conventional transistor amplifiers—like the ones that power your car speakers—work for a large span of frequencies. They can also boost signals ranging from the faint to the strong, and this so-called dynamic range enables your speakers to play both the quiet and loud parts of a song. But when an extremely sensitive amplifier is needed—for example, to boost the faint, high-frequency radio waves from distant galaxies—transistor amplifiers tend to introduce too much noise, resulting in a signal that is more powerful but less clear. One type of highly sensitive amplifier is a parametric amplifier, which boosts a weak input signal by using a strong signal called the pump signal. As both signals travel through the instrument, the pump signal injects energy into the weak signal, therefore amplifying it. About 50 years ago, Amnon Yariv, Caltech’s Martin and Eileen Summerfield Professor of Applied Physics and Electrical Engineering, showed that this type of amplifier produces as little noise as possible: the only noise it must produce is the unavoidable noise caused by the jiggling of atoms and waves according to the laws of quantum mechanics. The problem with many parametric amplifiers and sensitive devices like it, however, is that they can only amplify a narrow frequency range and often have a poor dynamic range. But the Caltech and JPL researchers say their new amplifier, which is a type of parametric amplifier, combines only the best features of other amplifiers. It operates over a frequency range more than ten times wider than other comparably sensitive amplifiers, can amplify strong signals without distortion, and introduces nearly the lowest amount of unavoidable noise. In principle, the researchers say, design improvements should be able to reduce that noise to the absolute minimum. Versions of the amplifier can be designed to work at frequencies ranging from a few gigahertz to a terahertz (1,000 GHz). For comparison, a gigahertz is about 10 times greater than commercial FM radio signals in the U.S., which range from about 88 to 108 megahertz (1 GHz is 1,000 MHz).
“Our new amplifier has it all,” Zmuidzinas says. “You get to have your cake and eat it too.” The team recently described the new instrument in the journal Nature Physics. One of the key features of the new parametric amplifier is that it incorporates superconductors—materials that allow an electric current to flow with zero resistance when lowered to certain temperatures. For their amplifier, the researchers are using titanium nitride (TiN) and niobium titanium nitride (NbTiN), which have just the right properties to allow the pump signal to amplify the weak signal. Although the amplifier has a host of potential applications, the reason the researchers built the device was to help them study the universe. The team built the instrument to boost microwave signals, but the new design can be used to build amplifiers that help astronomers observe in a wide range of wavelengths, from radio waves to X rays. For instance, the team says, the instrument can directly amplify radio signals from faint sources like distant galaxies, black holes, or other exotic cosmic objects. Boosting signals in millimeter to submillimeter wavelengths (between radio and infrared) will allow astronomers to study the cosmic microwave background—the afterglow of the big bang—and to peer behind the dusty clouds of galaxies to study the births of stars, or probe primeval galaxies. The team has already begun working to produce such devices for Caltech’s Owens Valley Radio Observatory (OVRO) near Bishop, California, about 250 miles north of Los Angeles. These amplifiers, Zmuidzinas says, could be incorporated into telescope arrays like the Combined Array for Research in Millimeter-wave Astronomy at OVRO, of which Caltech is a consortium member, and the Atacama Large Millimeter/submillimeter Array in Chile. Instead of directly amplifying an astronomical signal, the instrument can be used to boost the electronic signal from a light detector in an optical, ultraviolet, or even X-ray telescope, making it easier for astronomers to tease out faint objects.
Hmm..no mention of using these new amplifiers in the new Square Kilomer Array ( SKA ) telescopes being constructed in Australia and South Africa. These certainly could help improve the performance of radio telescopes, perhaps help in the discovery of Earth-like worlds.
But as in all things human – politics interferes in a lot of good things.
Getting amped: Researchers develop instrument for exploring the cosmos and the quantum world
Hat tip to the Daily Grail.
The Transcension of ET Civilizations
For some reason, 60 years seems to be enough time for SETI to scan the local star neighborhood for radio signals, a sign mainstream science believes will be the way we’ll prove there’s ET intelligence in the Universe.
And as Mankind hasn’t received any radio signals from Out There yet, the famous “Fermi Paradox” is invoked.
The following abstract gives yet another possible explanation of the “silence” and one I have heard of before, but it’s the first time I’ve seen it tossed out into the mainstream:
The emerging science of evolutionary developmental (“evo devo”) biology can aid us in thinking about our universe as both an evolutionary system, where most processes are unpredictable and creative, and a developmental system, where a special few processes are predictable and constrained to produce far-future-specific emergent order, just as we see in the common developmental processes in two stars of an identical population type, or in two genetically identical twins in biology. The transcension hypothesis proposes that a universal process of evolutionary development guides all sufficiently advanced civilizations into what may be called “inner space,” a computationally optimal domain of increasingly dense, productive, miniaturized, and efficient scales of space, time, energy, and matter, and eventually, to a black-hole-like destination. Transcension as a developmental destiny might also contribute to the solution to the Fermi paradox, the question of why we have not seen evidence of or received beacons from intelligent civilizations. A few potential evolutionary, developmental, and information theoretic reasons, mechanisms, and models for constrained transcension of advanced intelligence are briefly considered. In particular, we introduce arguments that black holes may be a developmental destiny and standard attractor for all higher intelligence, as they appear to some to be ideal computing, learning, forward time travel, energy harvesting, civilization merger, natural selection, and universe replication devices. In the transcension hypothesis, simpler civilizations that succeed in resisting transcension by staying in outer (normal) space would be developmental failures, which are statistically very rare late in the life cycle of any biological developing system. If transcension is a developmental process, we may expect brief broadcasts or subtle forms of galactic engineering to occur in small portions of a few galaxies, the handiwork of young and immature civilizations, but constrained transcension should be by far the norm for all mature civilizations.
The transcension hypothesis has significant and testable implications for our current and future METI and SETI agendas. If all universal intelligence eventually transcends to black-hole-like environments, after which some form of merger and selection occurs, and if two-way messaging (a send–receive cycle) is severely limited by the great distances between neighboring and rapidly transcending civilizations, then sending one-way METI or probes prior to transcension becomes the only real communication option. But one-way messaging or probes may provably reduce the evolutionary diversity in all civilizations receiving the message, as they would then arrive at their local transcensions in a much more homogenous fashion. If true, an ethical injunction against one-way messaging or probes might emerge in the morality and sustainability systems of all sufficiently advanced civilizations, an argument known as the Zoo hypothesis in Fermi paradox literature, if all higher intelligences are subject to an evolutionary attractor to maximize their local diversity, and a developmental attractor to merge and advance universal intelligence. In any such environment, the evolutionary value of sending any interstellar message or probe may simply not be worth the cost, if transcension is an inevitable, accelerative, and testable developmental process, one that eventually will be discovered and quantitatively described by future physics. Fortunately, transcension processes may be measurable today even without good physical theory, and radio and optical SETI may each provide empirical tests. If transcension is a universal developmental constraint, then without exception all early and low-power electromagnetic leakage signals (radar, radio, television), and later, optical evidence of the exoplanets and their atmospheres should reliably cease as each civilization enters its own technological singularities (emergence of postbiological intelligence and life forms) and recognizes that they are on an optimal and accelerating path to a black-hole-like environment. Furthermore, optical SETI may soon allow us to map an expanding area of the galactic habitable zone we may call the galactic transcension zone, an inner ring that contains older transcended civilizations, and a missing planets problem as we discover that planets with life signatures occur at a much lower frequencies in this inner ring than in the remainder of the habitable zone.
The mention of inner rings or zones smacks of the Anthropic Principle, so I’m not too impressed with this abstract, but it looks like it’s a very well written hypothesis.
But my question is this; “Why does the mainstream consider 60 years enough search time for ET activity to be detected?”
Are we really that convinced we’re on top of the local Galactic food-chain?
And where does that leave the issue of UFOs? Are they possible manifestations of civilizations who have attained Technological Singularity status?
Convince me.
Hat tip to the Daily Grail.
Will Robots Be Our Successors In Space Exploration?
The above question may already be a nonsequitor since automated space probes permeate the Solar System. The Moon and Mars are covered with mankind’s mechanical surrogates extensively with many more on the horizon despite NASA’s budgetary woes.
While lip service and political demagoguery concerning NASA’s budget and the manned space program rule the day and despite monetary cut-backs, the automated probe programs seem to have survived to a certain degree. And the public at large like the unmanned probe programs, it is the population in NASA districts in southern states who gripe about manned program budget short-falls. Tax-payer supported jobs there are popular in spite of the explosive cognitive dissonance.
In that vein, professor of electrical engineering at Penn State John D. Mathews spoke of SETI’s failure of finding ETIs and posits that exploring space will mean more machines, not Man:
“The basic premise is that human space exploration must be highly efficient, cost effective, and autonomous as placing humans beyond low Earth orbit is fraught with political economic, and technical difficulties,” John D. Mathews, professor of electrical engineering, reported in the current issue of the Journal of the British Interplanetary Society.
If aliens are out there, they have the same problems we do, they need to conserve resources, are limited by the laws of physics and they may not even be eager to meet us, according to Mathews.
He suggests that “only by developing and deploying self-replicating robotic spacecraft — and the incumbent communications systems — can the human race efficiently explore even the asteroid belt, let alone the vast reaches of the Kuiper Belt, Oort Cloud, and beyond.”
Mathews assumes that any extraterrestrial would need to follow a similar path to the stars, sending robots rather than living beings, which would explain why SETI has not succeeded to date.
“If they are like us, they too have a dysfunctional government and all the other problems plaguing us,” said Mathews. “They won’t want to spend a lot to communicate with us.”
It is extremely difficult to broadcast into the galaxy and requires vast resources. Radio signals need to emanate in every direction to fill the sky, and the energy requirement to broadcast throughout space is quite high.
“Current infrared lasers can communicate across our solar system,” said Mathews. “The problem in terms of SETI is they are highly directed beams.”
Point-to-point communications using infrared signaling requires less power, but the signals are extremely directional. If extra-terrestrial beings are using laser-generated infrared signaling, we would never notice their signals because they are so tightly targeted to their destinations.
Mathews suggests that if human exploration is not possible, robots could go where many people do not want to go and do what many do not want to do, not only on Earth, but also in space.
To minimize the cost, he suggests that the initial robots be manufactured on the moon to take advantage of the resources and the one-sixth gravity. He notes that we have the technology to create these exobots now, except for a compact power source. To create a network of autonomous robots capable of passing information to each other and back to earth, the vehicles must be able to identify their exact location and determine the time. With these two bits of knowledge, they should be able to determine where all the other robots near them are and target them with an infrared laser beam carrying data.
“The expensive part of launching anything is escaping the surface of Earth and its gravity well,” said Mathews. “It would also be easier to target the space debris in near Earth orbit and in geosynchronous orbit and even recycle it.”
Initially, the exobots would serve two purposes: clear existing debris and monitor the more than 1,200 near-Earth asteroids that are particularly hazardous in that they closely approach Earth during their orbits.
“As a first step, we really should launch robot vehicles to learn something about these asteroids and to place beacons on them for identification and tracking,” said Mathews.
Ultimately, the network of exobots — self-replicating, autonomous and capable of learning — will spread through the solar system and into the galaxy, using the resources they find there to continue their mission. Communicating with infrared lasers is communicating at the speed of light, which is the fastest we can hope to achieve.
“Our assumption in the search for extraterrestrial intelligence is that ET wants to be found,” said Mathews. “But who has energy resources to spend trying to wave their metaphorical hand across the galaxy?”
He said it is more likely that one of our exobots will intercept a signal from one of theirs if we are to make first contact.
I find this sad in a way, I do think mankind does have a place in exploring the Universe in person, beit in World Ships, suspended animation or by physics yet undefined in an engineering sense.
But if strong AI is the major way the Technological Singularity will occur, this could very well be the scenario by which humans will explore the Galaxy.
Finding ET May Require Giant Robotic Leap
Are Neutrinos the Interstellar Internet Broadband Communications of the Future?
When SETI was set up back in the 1950s, it was assumed that advanced technological civilizations would be bright with radio waves, broadcasting signals in all directions. And as these civilizations climbed up the Kardashev Scale, their power output would show brightly at first as they slowly turned silent in the infrared as their star became enclosed into a Dyson Sphere.
As the years have gone by however, SETI has failed to detect these radio signals. And something was discovered about our own planetary civilization’s communications; since we have started to use more digital methods of communication, we have began to become more silent.
What does this say about potential more advanced civilizations in the Galaxy? Have they discovered a way to use faster-than-light communication? Or are they using something that isn’t that easily discernable?
According to Jay Pasachoff and Marc Kutner neutrinos could be the medium by which interstellar communications are carried out by advanced interstellar civilizations. From Centauri Dreams:
Cosmic Search is a wonderful SETI resource despite its age, and the recent neutrino news out of Fermilab took me right back to a piece in its third issue by Jay Pasachoff and Marc Kutner on the question of using neutrinos for interstellar communications. Neutrinos are hard to manipulate because they hardly ever interact with other matter. On the average, neutrinos can penetrate four light years of lead before being stopped, which means that detecting them means snaring a tiny fraction out of a vast number of incoming neutrinos. Pasachoff and Kutner noted that this was how Frederick Reines and Clyde Cowan, Jr. detected antineutrinos in 1956, using a stream of particles emerging from the Savannah River reactor.
The Problem of Detection
In his work at Brookhaven National Laboratory, Raymond Davis, Jr. was using a 400,000 liter tank of perchloroethylene to detect solar neutrinos, and that’s an interesting story in itself. The tank had to be shielded from other particles that could cause reactions, and thus it was buried underground in a gold mine in South Dakota, where Davis was getting a neutrino interaction about once every six days out of the trillions of neutrinos passing through the tank. We’ve had a number of other neutrino detectors since, from the Sudbury Neutrino Observatory in Ontario to the Super Kamiokande experiments near the city of Hida, Japan and MINERvA (Main Injector Experiment for ν-A), the detector used in the Fermilab communications experiment.
The point is, these are major installations. Sudbury, for example, involves 1000 tonnes of heavy water contained in an acrylic vessel some 6 meters in radius, the detector being surrounded by normal water and some 9600 photomultiplier tubes mounted on the apparatus’ geodesic sphere. Super Kamiokande is 1000 meters underground in a mine, involving a cylindrical stainless steel tank 41 meters tall and almost 40 meters in diameter, containing 50,000 tons of water. You get the idea: Neutrino detectors are serious business requiring many tons of matter, and even with the advantages of these huge installations, our detection methods are still relatively insensitive.
Image: Scientists used Fermilab’s MINERvA neutrino detector to decode a message in a neutrino beam. Credit: Fermilab.
But Pasachoff and Kutner had an eye on neutrino possibilities for SETI detection. The idea has a certain resonance as we consider that even now, our terrestrial civilization is growing darker in many frequency bands as we resort to cable television and other non-broadcast technologies. If we had a lively century in radio and television broadcast terms just behind us, it’s worth considering that 100 years is a vanishingly short window when weighed against the development of a technological civilization. Thus the growing interest in optical SETI and other ways of detecting signs of an advanced civilization, one that may be going about its business but not necessarily building beacons at obvious wavelengths for us to investigate.
Neutrinos might fit the bill as a communications tool of the future. From the Cosmic Search article:
Much discussion of SETI has been taken up with finding a suitable frequency for radio communication. Interesting arguments have been advanced for 21 centimeters, the water hole, and other wavelengths. It is hard to reason satisfactorily on this subject; only the detection of a signal will tell us whether or not we are right. Neutrino detection schemes, on the other hand, are broad band, that is, the apparatus is sensitive to neutrinos of a wide energy range. The fact that neutrinos pass through the earth would also be an advantage, because detectors would be omnidirectional. Thus, the whole sky can be covered by a single detector. It is perhaps reasonable to search for messages from extraterrestrial civilizations by looking for the neutrinos they are transmitting, and then switch to electromagnetic means for further conversations.
The First Message Using a Neutrino Beam
Making this possible will be advances in our ability to detect neutrinos, and it’s clear how tricky this will be. The recent neutrino message at Fermilab, created by researchers from North Carolina State University and the University of Rochester, is a case in point. Fermilab’s NuMI beam (Neutrinos at the Main Injector) fired pulses at MINERvA, a 170-ton detector in a cavern some 100 meters underground. The team had encoded the word ‘neutrino’ into binary form, with the presence of a pulse standing for a ‘1’ and the absence of a pulse standing for a ‘0’.
3454 repeats of the 25-pulse message over a span of 142 minutes delivered the information, corresponding to a transmission rate of 0.1 bits per second with an error rate of 1 percent. Out of trillions of neutrinos, an average of just 0.81 neutrinos were detected for each pulse, but that was enough to deliver the message. Thus Fermilab’s NuMI neutrino beam and the MINERvA detector have demonstrated digital communications using neutrinos, pushing the signal through several hundred meters of rock. It’s also clear that neutrino communications are in their infancy.
From the paper on the Fermilab work:
…long-distance communication using neutrinos will favor detectors optimized for identifying interactions in a larger mass of target material than is visible to MINERvA and beams that are more intense and with higher energy neutrinos than NuMI because the beam becomes narrower and the neutrino interaction rate increases with neutrino energy. Of particular interest are the largest detectors, e.g., IceCube, that uses the Antarctic icepack to detect events, along with muon storage rings to produce directed neutrino beams.
Thinking about future applications, I asked Daniel Stancil (NCSU), lead author of the paper on this work, about the possibilities for communications in space. Stancil said that such systems were decades away at the earliest and noted the problem of detector size — you couldn’t pack a neutrino detector into any reasonably sized spacecraft, for example. But get to a larger scale and more things become possible. Stancil added “Communication to another planet or moon may be more feasible, if local material could be used to make the detector, e.g., water or ice on Europa.”
A Neutrino-Enabled SETI
Still pondering the implications of the first beamed neutrino message, I returned to Pasachoff and Kutner, who similarly looked to future improvements to the technology in their 1979 article. What kind of detector would be needed, they had asked, to repeat the results Raymond Davis, Jr. was getting from solar neutrinos at Brookhaven (one interaction every six days) if spread out to interstellar distances? The authors calculated that a 1 trillion electron volt proton beam would demand a detector ten times the mass of the Earth if located at the distance of Tau Ceti (11.88 light years). That’s one vast detector but improvements in proton beam energy can help us reduce detector mass dramatically. I wrote to Dr. Pasachoff yesterday to ask for a comment on the resurgence of his interstellar neutrino thinking. His response:
We are such novices in communication, with even radio communications not much different from 100 years old, as we learned from the Titanic’s difficulties with wireless in 1912. Now that we have taken baby steps with neutrino communication, and checked neutrino oscillations between distant sites on Earth, it is time to think eons into the future when we can imagine that the advantages of narrow-beam neutrinos overwhelm the disadvantages of generating them. As Yogi Berra, Yankee catcher of my youth, is supposed to have said, “Prediction is hard, especially about the future.” Still, neutrino beams may already be established in interstellar conversations. I once examined Raymond Davis’s solar-neutrino records to see if a signal was embedded; though I didn’t find one, who knows when our Earth may pass through some random neutrino message being beamed from one star to another–or from a star to an interstellar spaceship.
Neutrino communications, as Pasachoff and Kutner remarked in their Cosmic Search article, have lagged radio communications by about 100 years, and we can look forward to improvements in neutrino methods considering near-term advantages like communicating with submerged submarines, a tricky task with current technologies. From a SETI perspective, reception of a strong modulated neutrino signal would flag an advanced civilization. The prospect the authors suggest, of an initial neutrino detection followed by a dialogue developed through electromagnetic signals, is one that continues to resonate.
I think neurino signals sent nilly-willy throughout the Galaxy would not be the wasy to go, but if they were employed in an interplanetary or interstellar Internet manner, it would be fantastic since an abundance of information could be packed into the carrier signal and thusly, hard to detect without the proper equipment.