Tag Archives: alpha centauri system

Alpha Centauri B has an Earth-Mass Planet !

From spaceref.com:

European astronomers have discovered a planet with about the mass of the Earth orbiting a star in the Alpha Centauri system — the nearest to Earth. It is also the lightest exoplanet ever discovered around a star like the Sun. The planet was detected using the HARPS instrument on the 3.6-meter telescope at ESO’s La Silla Observatory in Chile. The results will appear online in the journal Nature on 17 October 2012.

Alpha Centauri is one of the brightest stars in the southern skies and is the nearest stellar system to our solar system — only 4.3 light-years away. It is actually a triple star — a system consisting of two stars similar to the Sun orbiting close to each other, designated Alpha Centauri A and B, and a more distant and faint red component known as Proxima Centauri [1]. Since the nineteenth century astronomers have speculated about planets orbiting these bodies, the closest possible abodes for life beyond the solar system, but searches of increasing precision had revealed nothing. Until now.

“Our observations extended over more than four years using the HARPS instrument and have revealed a tiny, but real, signal from a planet orbiting Alpha Centauri B every 3.2 days,” says Xavier Dumusque (Geneva Observatory, Switzerland, and Centro de Astrofisica da Universidade do Porto, Portugal), lead author of the paper. “It’s an extraordinary discovery and it has pushed our technique to the limit!”

The European team detected the planet by picking up the tiny wobbles in the motion of the star Alpha Centauri B created by the gravitational pull of the orbiting planet [2]. The effect is minute — it causes the star to move back and forth by no more than 51 centimeters per second (1.8 km/hour), about the speed of a baby crawling. This is the highest precision ever achieved using this method.

Alpha Centauri B is very similar to the Sun but slightly smaller and less bright. The newly discovered planet, with a mass of a little more than that of the Earth [3], is orbiting about six million kilometers away from the star, much closer than Mercury is to the Sun in the solar system. The orbit of the other bright component of the double star, Alpha Centauri A, keeps it hundreds of times further away, but it would still be a very brilliant object in the planet’s skies.

The first exoplanet around a Sun-like star was found by the same team back in 1995 and since then there have been more than 800 confirmed discoveries, but most are much bigger than the Earth, and many are as big as Jupiter [4]. The challenge astronomers now face is to detect and characterize a planet of mass comparable to the Earth that is orbiting in the habitable zone [5] around another star. The first step has now been taken [6].

“This is the first planet with a mass similar to Earth ever found around a star like the Sun. Its orbit is very close to its star and it must be much too hot for life as we know it,” adds Stephane Udry (Geneva Observatory), a co-author of the paper and member of the team, “but it may well be just one planet in a system of several. Our other HARPS results, and new findings from Kepler, both show clearly that the majority of low-mass planets are found in such systems.”

“This result represents a major step towards the detection of a twin Earth in the immediate vicinity of the Sun. We live in exciting times!” concludes Xavier Dumusque.

ESO will hold an online press conference offering journalists the opportunity to discuss the result and its impact with the scientists:http://www.eso.org/public/announcements/ann12072/

It finally happened, an interstellar world, even though it’s not really a “garden” world like ours, it’s the first true earth-mass one discovered – and it’s only 25 trillion miles away!

Not only are scientists excited about the size – prevailing theory claims that there could be more rocky worlds out into Centauri B’s habitable zone waiting to be discovered.

I wonder if James Cameron is planning an expedition now?

Earth-Mass Planet Found Orbiting Alpha Centauri B

For those who like to read papers, here’s the original text – http://www.eso.org/public/archives/releases/sciencepapers/eso1241/eso1241a.pdf

Again thanks to Greg at the Daily Grail !

Robotic Interstellar Galactic Networks

Interstellar Galactic Federations and Empires not withstanding, Einstein’s Special Theory of Relativty still rules.

However, Paul Gilster posts on his blog Centauri Dreams that below light speed colonization of the galaxy can have a normal, more organic method of colonizing the galaxy by human, or alien intelligences:

Imagine a future in which we manage to reach average speeds in the area of one percent of the speed of light. That would make for a 437-year one-way trip to the Alpha Centauri system, too long for anything manned other than generation ships or missions with crews in some kind of suspended animation. Although 0.01c is well beyond our current capabilities, there is absolutely nothing in the laws of physics that would prevent our attaining such velocities, assuming we can find the energy source to drive the vehicle. And because it seems an achievable goal, it’s worth looking at what we might do with space probes and advanced robotics that can move at such velocities.

How, in other words, would a spacefaring culture use artificial intelligence and fast probes to move beyond its parent solar system? John Mathews ( Pennyslvania State) looks at the issue in a new paper, with a nod to the work of John von Neumann on self-reproducing automata and the subsequent thoughts of Ronald Bracewell and Frank Tipler on how, even at comparatively slow (in interstellar terms) speeds like 0.01c, such a culture could spread through the galaxy. There are implications for our own future here, but also for SETI, for Mathews uses the projected human future as a model for what any civilization might accomplish. Assume the same model of incremental expansion through robotics and you may uncover the right wavelengths to use in observing an extraterrestrial civilization, if indeed one exists.

Image: The spiral galaxy M101. If civilizations choose to build them, self-reproducing robotic probes could theoretically expand across the entire disk within a scant million years, at speeds well below the speed of light. Credit:  STScI.

But let’s leave SETI aside for a moment and ponder robotics and intelligent probes. Building on recent work by James and Gregory Benford on interstellar beacons, Mathews likewise wants to figure out the most efficient and cost-effective way of exploring nearby space, one that assumes exploration like this will proceed using only a small fraction of the Gross Planetary Product (GPP) and (much later) the Gross Solar System Product (GSSP). The solution, given constraints of speed and efficiency, is the autonomous, self-replicating robot, early versions of which we have already sent into the cosmos in the form of probes like our Pioneers and Voyagers.

The role of self-replicating probes — Mathews calls them Explorer roBots, or EBs — is to propagate throughout the Solar System and, eventually, the nearby galaxy, finding the resources needed to produce the next generation of automata and looking for life. Close to home, we can imagine such robotic probes moving at far less than 0.01c as they set out to do something targeted manned missions can’t accomplish, reaching and cataloging vast numbers of outer system objects. Consider that the main asteroid belt is currently known to house over 500,000 objects, while the Kuiper Belt is currently thought to have more than 70,000 100-kilometer and larger objects. Move into the Oort and we’re talking about billions of potential targets.

A wave of self-reproducing probes (with necessary constraints to avoid uninhibited growth) could range freely through these vast domains. Mathews projects forward not so many years to find that ongoing trends in computerization will allow for the gradual development of the self-sufficient robots we need, capable of using the resources they encounter on their journeys and communicating with a growing network in which observations are pooled. Thus the growth toward a truly interstellar capability is organic, moving inexorably outward through robotics of ever-increasing proficiency, a wave of exploration that does not need continual monitoring from humans who are, in any case, gradually going to be far enough away to make two-way communications less and less useful.

Paul calls robotic networks “organic” in the way they might grow, but there is a commenter on the post who disagrees with it and I might agree with that.

But that doesn’t discount a more “cybernetic” approach in which the combination of machine with organic technology is the more “natural” extension or evolution of intelligent lifeforms.

I would look for rigidly constructed organic molecular structures in the interstellar medium as materials for Bracewell Probes.

Robotic Networks Among the Stars