Tag Archives: Internet

Vint Cerf and the Interplanetary Internet

This is an interview with the true inventor of the InnerTubes.

Not Al Gore.

From Wired:

When some future Mars colonist is able to open his browser and watch a cat in a shark suit chasing a duck while riding a roomba, they will have Vint Cerf to thank.

In his role as Google’s chief internet evangelist, Cerf has spent much of his time thinking about the future of the computer networks that connect us all. And he should know. Along with Bob Kahn, he was responsible for developing the internet protocol suite, commonly known as TCP/IP, that underlies the workings of the net. Not content with just being a founding father of the internet on this planet, Cerf has spent years taking the world wide web out of this world.

Working with NASA and JPL, Cerf has helped develop a new set of protocols that can stand up to the unique environment of space, where orbital mechanics and the speed of light make traditional networking extremely difficult. Though this space-based network is still in its early stages and has few nodes, he said that we are now at “the front end of what could be an evolving and expanding interplanetary backbone.”

Father of the Internet Vint Cerf is responsible for helping develop the TCP/IP protocols that underly the web. In his role as Google’s chief internet evangelist, Cerf is dedicated to thinking about the future of the net, including its use in space. Image: Google/Weinberg-Clark

Wired talked to Cerf about the interplanetary internet’s role in space exploration, the frustrations of network management on the final frontier, and the future headline he never wants to see.

Wired: Though it’s been around a while, the concept of an interplanetary internet is probably new to a lot of people. How exactly do you build a space network?

Vint Cerf: Right, it’s actually not new at all – this project started in 1998. And it got started because 1997 was very nearly the 25th anniversary of the design of the internet. Bob Kahn and I did that work in 1973. So back in 1997, I asked myself what should I be doing that will be needed 25 years from then. And, after consultation with colleagues at the Jet Propulsion Laboratory, we concluded that we needed much richer networking than was then available to NASA and other space faring agencies.

Up until that time and generally speaking, up until now, the entire communications capabilities for space exploration had been point-to-point radio links. So we began looking at the possibilities of TCIP/IP as a protocol for interplanetary communication. We figure it worked on Earth and it ought to work on Mars. The real question was, “Would it work between the planets?” And the answer turned out to be, “No.”

The reason for this is two-fold: First of all, the speed of light is slow relative to distances in the solar system. A one-way radio signal from Earth to Mars takes between three and half and 20 minutes. So round trip time is of course double that. And then there’s the other problem: planetary rotation. If you’re communicating with something on the surface of the planet, it goes out of communication as the planet rotates. It breaks the available communications and you have to wait until the planet rotates back around again. So what we have is variable delay and disruption, and TCP does not do terribly well in those kinds of situations.

One of the things that the TCP/IP protocols assume is that there isn’t enough memory in each of the routers to hold anything. So if a packet shows up and it’s destined for a place for which you have an available path, but there isn’t enough room, then typically the packet is discarded.

We developed a new suite of protocols that we called the Bundle protocols, which are kind of like internet packets in the sense that they’re chunks of information. They can be quite big and they basically get sent like bundles of information. We do what’s called storing forward, which is the way all packet switching works. It’s just in this case the interplanetary protocol has the capacity to store quite a bit, and usually for quite a long time before we can get rid of it based on connectivity to the next hop.

Wired: What are the challenges with working and making a communications network in space as opposed to a ground-based internet?

Cerf: Among the hard things, first of all, is that we couldn’t use the domain name system in its current form. I can give you a quick illustration why that’s the case: Imagine for a moment you’re on Mars, and somebody is trying to open up an HTTP web connection to Earth. They’ve given you a URL that contains a domain name in it, but before you can open up a TCP connection you need to have an IP address.

So you will have to do a domain name lookup, which can translate the domain name you’re trying to lookup into an IP address. Now remember you’re on Mars and the domain name you’re trying to look up is on Earth. So you send out a DNS lookup. But it may take anywhere from 40 minutes to an unknown amount of time — depending on what kind of packet loss you have, whether there’s a period of disruption based on planetary rotation, all that kind of stuff — before you get an answer back. And then it may be the wrong answer, because by the time it gets back maybe the node has moved and now it has a different IP address. And from there it just gets worse and worse. If you’re sitting around Jupiter, and trying to do a lookup, many hours go by and then it’s just impossible.

So we had to break it into a two-phase lookup and use what’s called delayed binding. First you figure out which planet you’re going to, then you route the traffic to that planet, and only then you do a local lookup, possibly using the domain name.

The other thing is when you are trying to manage a network with this physical scope and all the uncertainty delays, the things we typically do for network management don’t work very well. There’s a protocol called SNMP, the simple network management protocol, and it is based on the idea that you can send a packet out and get an answer back in a few milliseconds, or a few hundreds of milliseconds. If you’re familiar with the word ping, you’ll know what I mean, because you ping something and expect to get an answer back fairly quickly. If you don’t get it back in a minute or two, you begin to conclude that there is something wrong and the thing isn’t available. But in space, it takes a long time for the signal to even get to the destination let alone get an answer back. So network management turns out to be a lot harder in this environment.

Then the other thing we had to worry about was security. The reason for that should be obvious — one of the things we wanted to avoid was the possibility of a headline that says: “15-Year-Old Takes Over Mars Net.” Against that possibility we put quite a bit of security into the system, including strong authentication, three way handshakes, cryptographic keys, and things of that sort in order to reduce the likelihood that someone would abuse access to the space network.

Wired: Because it has to communicate across such vast distances, it seems like the interplanetary internet must be huge.

Cerf: Well, in purely physical terms — that is, in terms of distance — it’s a pretty large network. But the number of nodes is pretty modest. At the moment, the elements participating in it are devices in planet Earth, including the Deep Space Network, which is operated at JPL. That consists of three 70-meter dishes plus a smattering of 35-meter dishes that can reach out into the solar system with point-to-point radio links. Those are part of the TDRSS [tee-driss] system, which is used for a lot of near-Earth communications by NASA. The ISS also has several nodes on board capable of using this particular set of protocols.

NASA/JSC

Two orbiters around Mars are running the prototype versions of this software, and virtually all the information that’s coming back from Mars is coming back via these store-forward relays. The Spirit and Opportunity rovers on the planet and the Curiosity rover are using these protocols. And then there’s the Phoenix lander, which descended to the north pole of Mars in 2008. It also was using these protocols until the Martian winter shut it down.

And finally, there’s a spacecraft in orbit around the sun, which is actually quite far away, called EPOXI [the spacecraft was 32 million kilometers from Earth when it tested the interplanetary protocols]. It has been used to rendezvous with two comets in the last decade to determine their mineral makeup.

But what we hope will happen over time — assuming these protocols are adopted by the Consultative Committee on Space Data Systems, which standardizes space communication protocols — then every spacefaring nation launching either robotic or manned missions has the option of using these protocols. And that means that all the spacecraft that have been outfitted with those protocols could be used during the primary mission, and could then be repurposed to become relays in a stored forward network. I fully expect to see these protocols used for both manned and robotic exploration in the future.

Wired: What are the next steps to expand this?

Cerf: We want to complete the standardization with the rest of the spacefaring community. Also, not all pieces are fully validated yet, including our strong authentication system. Then second, we need to know how well we can do flow control in this very, very peculiar and potentially disrupted environment.

Third, we need to verify that we can do serious real-time things including chat, video and voice. We will need to learn how to go from what appears to be an interactive real-time chat, like one over the phone, to probably an email-like exchange, where you might have voice and video attached but it’s not immediately interactive.

Delivering the bundle is very much like delivering a piece of email. If there’s a problem with email it usually gets retransmitted, and after a while you time out. The bundle protocol has similar characteristics, so you anticipate that you have variable delay that could be very long. Sometimes if you’ve tried many times and don’t get a response, you have to assume the destination is not available.

Wired: We often talk about how the things we invent for space are being used here on Earth. Are there things about the interplanetary internet that could potentially be used on the ground?

Cerf: Absolutely. The Defense Advanced Research Projects Agency (DARPA) funded tests with the U.S. Marine Corps on tactical military communication using these highly resilient and disruption-tolerant protocols. We had successful tests that showed in a typical hostile communication environment that we were able to put three to five times more data through this disrupted system than we could with traditional TCP/IP.

Part of the reason is that we assume we can store traffic in the network. When there’s high activity, we don’t have to retransmit from end to end, we can just retransmit from one of the intermediate points in the system. This use of memory in the network turns out to be quite effective. And of course we can afford to do that because memory has gotten so inexpensive.

The European Commission has also sponsored a really interesting project using the DTM protocols in northern Sweden. In an area called Lapland, there’s a group called the Saami reindeer herders. They’ve been herding reindeer for 8,000 years up there. And the European Commission sponsored a research project managed by the Lulea University of Technology in northern Sweden to put these protocols on board all-terrain vehicles in laptops. This way, you could run a Wi-Fi service in villages in Northern Sweden and drop messages off and pick them up according to the protocols. As you move around, you were basically a data mule carrying information from one village to another.

Wired: There was also an experiment called Mocup that involved remote controlling a robot on Earth from the space station. These protocols were used, right?

Cerf: Yes, we used the DTN protocols for that. We were all really excited for that because, although the protocols were originally designed to deal with very long and uncertain delay, when there is high quality connectivity, we can use it for real-time communication. And that’s exactly what they did with the little German rover.

I think in general communication will benefit from this. Putting these protocols in mobile phones, for instance, would create a more powerful and resilient communications platform than what we typically have today

Wired: So if I have poor reception on my cell phone at my house, I could still call my parents?

Cerf: Well, actually what might happen is that you could store what you said and they would eventually get it. But it wouldn’t be real time. If the disruption lasts for an appreciable length of time, it would arrive later. But at least the information would eventually get there.

What about quantum entanglement?

There’s an experiment to be done in 2016 which an entangled signal is to be sent to a satellite launched by the Chinese, ( The Race to Bring Quantum Teleportation to Your World ).

Will that make the Interplanetary Internet obsolete before it literally gets off the ground?

Or will quantum entanglement enhance it?

Google’s Chief Internet Evangelist on Creating the Interplanetary Internet

Virtual Immortality

From kurzweil.ai:

Where their grandparents may have left behind a few grainy photos, a death certificate or a record from Ellis Island, retirees today have the ability to leave a cradle-to-grave record of their lives, The New York Times reports.

Two major forces are driving virtual immortality. The first and most obvious: inexpensive video cameras and editing programs, personal computers and social media sites like Facebook, Twitter and YouTube.

These technologies dovetail with a larger cultural shift recognizing the importance of ordinary lives. The shift is helping to redefine the concept of history, as people suddenly have the tools and the desire to record the lives of almost everybody.

The ancient problem that bedeviled historians — a lack of information — has been overcome. Unfortunately, it has been vanquished with a vengeance. The problem is too much information.

In response, a growing number of businesses and organizations have arisen during the last two decades to help people preserve and shape their legacy.

This reminds me of the Robin Williams film The Final Cut in which Williams works for a company that “edits” a deceased person’s life history recording before giving ( selling? ) it to the person’s family.

Which begs the question “Who has the right to edit a person’s, or event’s history?”

Hey, at least you can be virtually immortal

Human Homeless Hotspots

A recent newsline, even on the mainstream news has caught America’s attention:

Much has been written about SXSW’s “Homeless Hotspots,” and the backlash has been swift and harsh. Melvin, an Ohio native, has been working the sidewalk outside of the Austin Convention Center for the last four days, offering people access to Wi-Fi in exchange for the suggestion of a donation, and doesn’t seem perturbed: “It’s been pretty much straight up,” he told BuzzFeed FWD. That said, “I think it would be, from my aspect, more helpful to know what my income is — my compensation.”

Melvin became part of this experiment, which was masterminded by marketing agency BBH, through a local homeless shelter called Front Steps. “They gave me the information about this. I just opted to get involved.” Melvin’s profile on the HH website is here.

He says it’s been busy, but otherwise OK. “People have been polite for the most part, yeah. I mean you have that select few.” I sense that he’s getting a lot of questions about the program rather than access codes, which is getting tiring.

Asked about the public’s reaction – namely claims that the program is demeaning or, as the New York Times said, “a little dystopian,” Melvin smiled. “I don’t feel that way at the moment, heh, but of course that all depends on some other issues.” Issues like money, mostly, which he and his coworkers won’t know about for about ten more days. People donate through PayPal, out of sight of the Hotspot holders themselves.

Melvin, who declined to give his last name or his age, appears to have kept a positive outlook about the whole thing, and about his own plight, which he also declined to talk much about.

“I would say that these people are trying to help the homeless, and increase awareness. They’re trying not to put us in a situation where we’re stereotyped. That’s a good side of it, too — we get to talk to people. Maybe give them a different perception of what homeless is like,” he said.

“It’s all good.”

Many people have weighed in on this, such as the Today Show had folks commenting on it.

Some people call it exploitation, some call it ” just makin’ a buck.”

I call it just another sign of the coming ( or starting ) Technological Singularity as these folks could qualify as cybernetic organisms.

Life As A Homeless Hotspot

Hat tip to Kurzweil AI

Builderburgler Jay Rockefeller Wants ‘Net Control

My friend Nolocontendere has a theory about the recent ‘cyber-attacks’ on government agency sites:

Fear sells better than sex.

Blitz of “Cyber Attacks” as Rockefeller Bill Approaches

A determined propaganda blitz is well underway as the government sets the stage for the passage of Cybersecurity Act of 2009, introduced in the Senate earlier this year. If passed, it will allow Obama to shut down the internet and private networks. The legislation also calls for the government to have the authority to demand security data from private networks without regard to any provision of law, regulation, rule or policy restricting such access. In other words, the bill allows the government to impose authoritarian control over electronic communications.”

“According to “security experts analyzing the attacks,” Obama’s White House, the Pentagon, the New York Stock Exchange, the National Security Agency, Homeland Security Department, State Department, the Treasury Department, Federal Trade Commission and Secret Service, the Nasdaq stock market and The Washington Post were targeted.
All of this is happening as Senate Commerce Chairman John (Jay) Rockefeller — who has said we’d all be better off if the internet was never invented — plans a committee vote on cybersecurity legislation he introduced in April with Sen. Olympia Snowe, R-Maine.”

I agree. The so-called attacks were only superficial, if true.

Nothing serious was cracked and no data was lost, so WTF?

More false flag B.S.

“Cyber Attack” Just Excuse For More Government Control?

Interplanetary Google-Plex

Universe Today:

In an initiative energized by Google Vice-President and Chief Internet Evangelist Vint Cerf, the International Space Station could be testing a brand new way of communicating with Earth. In 2009, it is hoped that the ISS will play host to an Interplanetary Internet prototype that could standardize communications between Earth and space, possibly replacing point-to-point single use radio systems customized for each individual space mission since the beginning of the Space Age.

This partnership opens up some exciting new possibilities for the future of communicating across vast distances of the Solar System. Manned and robotic space craft will be interconnected via a robust interplanetary network without the problems associated with incompatible communication systems…

The project started 10 years ago as an attempt to figure out what kind of technical networking standards would be useful to support interplanetary communication,” Cerf said in a recent interview. “Bear in mind, we have been flying robotic equipment to the inner and outer planets, asteroids, comets, and such since the 1960’s. We have been able to communicate with those robotic devices and with manned missions using point-to-point radio communications. In fact, for many of these missions, we used a dedicated communications system called the Deep Space Network (DSN), built by JPL in 1964.”

Indeed, the DSN has been the backbone of interplanetary communications for decades, but an upgrade is now required as we have a growing armada of robotic missions exploring everything from the surface of Mars to the outermost regions of the Solar System. Wouldn’t it be nice if a communication network could be standardized before manned missions begin moving beyond terrestrial orbit?

_____________________________

On the observational mainstream surface, the concept makes good, logical sense.

I cannot make any additional, knowledgable comments because my expertise in InnerTube Networking is limited at best, even though I am an experienced ‘user’. I simply find the ‘architecture’ aspect overwhelming.

Okay, I’ll make a guess ( so I lied about not commenting ); From what I get from this is that each planet, moon, artificial satellite and probe will have its own individual ‘Internet.’ Each local network will then send time delayed TCP/IP ‘packets’ to each other, thus linking up to the major Earth Google-Plex.

The deal breaker is the light-speed delay, but this should be negated somewhat by a hardy ‘time delayed’ TCP/IP protocol.

It would seem to me that would require more memory packed into even smaller physical entities.

Quantum computing to the rescue?

Or perhaps the GooglePlex AI needs to happen first?

Google and NASA are working on Interplanetary Internet

Novamente: Intelligent Virtual Agents – Updates

__________________________________