Tag Archives: interstellar exploration

Hairspray! The Alien Civilization Story!

From Space.com:

Hairspray might one day serve as the sign that aliens have reshaped distant worlds, researchers say. Such research to find signs of alien technology is now open to funding from the public.

Science fiction has long imagined that humans could transform hostile alien worlds into livable ones, a procedure known as terraforming. For instance, to colonize Mars, scientists have suggested warming the red planet and thickening its extraordinarily thin atmosphere so that humans can roam its surface without having to wear spacesuits. To do so, plans to terraform Mars often involve vast amounts of greenhouses gases to trap enough heat from the Sun, forcing carbon dioxide frozen on the planet’s surface to turn into gas.

If humans might one day terraform planets, aliens with more advanced technology might have already done so. If that’s the case, astronomers could look for telltale signs of such changes to reveal that intelligent extraterrestrial life exists.

“Our hypothesis is that evidence of intelligent life might be evident in a planetary atmosphere,” said astrobiologist Mark Claire at the Blue Marble Space Institute of Science, a nonprofit network of scientists across the world.

One group of gases that might be key to terraforming planets are chlorofluorocarbons (CFCs). These nontoxic, long-lived chemicals are strong greenhouse gases and were once often used in hairspray and air conditioners, among many other products.

CFCs are entirely artificial, with no known natural process capable of creating them in atmospheres. Detecting signs of these gases on far-off worlds with telescopes might serve as potent evidence that intelligent alien civilizations were the cause, either intentionally as part of terraforming or accidentally via industrial pollution.

“An industrialized civilization will be one that will use its planetary resources for fabrication, the soon-to-be-detectable-from-Earth atmospheric byproducts of which could be a tell-tale sign of their activity,” said astrobiologist Sanjoy Som of the Blue Marble Space Institute of Science.

Telescopes have currently helped spot hundreds of exoplanets so far and should help detect hundreds more soon. Future observatories could analyze the atmospheres of these worlds, and CFCs should be easy to see, because the way they absorb light is very different from naturally-occurring chemicals.

“We are on the scientific verge of being able to actively look for extrasolar worlds inhabited by technological civilizations,” Som said. “We are about a decade away of being able to measure detailed compositions of the atmospheres of extrasolar planets.”

Using state-of-the-art computer models of atmospheric chemistry and climate, the researchers plan to discover what visible signs CFCs and other artificial byproducts of alien terraforming or industry might have on exoplanet atmospheres.

“We will then test if these features are detectable over interstellar distances, by severely downgrading our computed signal to mimic the signal quality of next-generation telescopes,” Claire said.

Scientists worldwide could then use this data to see if any of the exoplanets discovered so far or to come show evidence of these “technosignatures.”

“This SETI proposal is about looking at atmospheric chemistry rather than other previously proposed technosignatures like radio signals or pulsed light beams,” Claire said.

Claire added that sulfur hexaflouride is another industrial molecule and greenhouse gas that could serve as a technosignature. Other technosignatures may include unusually large amounts of ammonia or carbon dioxide, when observed alongside gases such as oxygen and water vapor, which are often thought to be common signs of life, Som said.

I can see that this is a nice, safe method of the mainstream “discovering” alien civilizations using super-advanced spectrographic measurements of extra-planetary atmospheres.

It keeps the aliens at a distance that is “untraversable” by mechanical means ( which mainstream science and politics deems desirable )  but it satisfies the need to find alien peoples.

And meets the criteria of the 1960 Brookings Report.

Hat tip to The Anomalist.

Mars and all that radiation

From Phys.org:

Can humans live on Mars ?

Curiosity is taking the first ever radiation measurements from the surface of another planet in order to determine if future human explorers can live on Mars – as she traverses the terrain of the Red Planet. Curiosity is looking back to her rover tracks and the foothills of Mount Sharp and the eroded rim of Gale Crater in the distant horizon on Sol 24 (Aug. 30, 2012). This panorama is featured on PBS NOVA ‘Ultimate Mars Challenge’ documentary which premiered on Nov. 14. RAD is located on the rover deck in this colorized mosaic stitched together from Navcam images. Credit: NASA / JPL-Caltech / Ken Kremer / Marco Di Lorenzo

Read more at: http://phys.org/news/2012-11-humans-mars.html#jCp

NASA’s plucky Mars Exploration Rover Opportunity has thrived for nearly a decade traversing the plains of Meridiani Planum despite the continuous bombardment of sterilizing cosmic and solar radiation from charged particles thanks to her radiation hardened innards. How about humans? What fate awaits them on a bold and likely year’s long expedition to the endlessly extreme and drastically harsh environment on the surface of the radiation drenched Red Planet – if one ever gets off the ground here on Earth? How much shielding would people need? Answering these questions is one of the key quests ahead for NASA’s SUV sized Curiosity Mars rover – now 100 Sols, or Martian days, into her 2 year long primary mission phase. Preliminary data looks promising. Curiosity survived the 8 month interplanetary journey and the unprecedented sky crane rocket powered descent maneuver to touch down safely inside Gale Crater beside the towering layered foothills of 3 mi. (5.5 km) high Mount Sharp on Aug. 6, 2012. Now she is tasked with assessing whether Mars and Gale Crater ever offered a habitable environment for microbial life forms – past or present. Characterizing the naturally occurring radiation levels stemming from galactic cosmic rays and the sun will address the habitability question for both microbes and astronauts. Radiation can destroy near-surface organic molecules.

Read more at: http://phys.org/news/2012-11-humans-mars.html#jCp

Can humans live on Mars ?

Longer-Term Radiation Variations at Gale Crater. This graphic shows the variation of radiation dose measured by the Radiation Assessment Detector on NASA’s Curiosity rover over about 50 sols, or Martian days, on Mars. (On Earth, Sol 10 was Sept. 15 and Sol 60 was Oct. 6, 2012.) The dose rate of charged particles was measured using silicon detectors and is shown in black. The total dose rate (from both charged particles and neutral particles) was measured using a plastic scintillator and is shown in red. Credit: NASA/JPL-Caltech/ SwRI

Read more at: http://phys.org/news/2012-11-humans-mars.html#jCp

Researchers are using Curiosity’s state-of-the-art Radiation Assessment Detector (RAD) instrument to monitor high-energy radiation on a daily basis and help determine the potential for real life health risks posed to future human explorers on the Martian surface. “The atmosphere provides a level of shielding, and so charged-particle radiation is less when the atmosphere is thicker,” said RAD Principal Investigator Don Hassler of the Southwest Research Institute in Boulder, Colo. See the data graphs. “Absolutely, the astronauts can live in this environment. It’s not so different from what astronauts might experience on the International Space Station. The real question is if you add up the total contribution to the astronaut’s total dose on a Mars mission can you stay within your career limits as you accumulate those numbers. Over time we will get those numbers,” Hassler explained. The initial RAD data from the first two months on the surface was revealed at a media briefing for reporters on Thursday, Nov. 15 and shows that radiation is somewhat lower on Mars surface compared to the space environment due to shielding from the thin Martian atmosphere. RAD hasn’t detected any large solar flares yet from the surface. “That will be very important,” said Hassler. “If there was a massive solar flare that could have an acute effect which could cause vomiting and potentially jeopardize the mission of a spacesuited astronaut.” “Overall, Mars’ atmosphere reduces the radiation dose compared to what we saw during the cruise to Mars by a factor of about two.” RAD was operating and already taking radiation measurements during the spacecraft’s interplanetary cruise to compare with the new data points now being collected on the floor of Gale Crater. Enlarge Curiosity Self Portrait with Mount Sharp at Rocknest ripple in Gale Crater. Curiosity used the Mars Hand Lens Imager (MAHLI) camera on the robotic arm to image herself and her target destination Mount Sharp in the background. Mountains in the background to the left are the northern wall of Gale Crater. This color panoramic mosaic was assembled from raw images snapped on Sol 85 (Nov. 1, 2012). Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Read more at: http://phys.org/news/2012-11-humans-mars.html#jCp

Mars atmospheric pressure is a bit less than 1% of Earth’s. It varies somewhat in relation to atmospheric cycles dependent on temperature and the freeze-thaw cycle of the polar ice caps and the resulting daily thermal tides. “We see a daily variation in the radiation dose measured on the surface which is anti-correlated with the pressure of the atmosphere. Mars atmosphere is acting as a shield for the radiation. As the atmosphere gets thicker that provides more of a shield. Therefore we see a dip in the radiation dose by about 3 to 5%, every day,” said Hassler. There are also seasonal changes in radiation levels as Mars moves through space. The RAD team is still refining the radiation data points. “There’s calibrations and characterizations that we’re finalizing to get those numbers precise. We’re working on that. And we’re hoping to release that at the AGU [American Geophysical Union] meeting in December.”

Read more at: http://phys.org/news/2012-11-humans-mars.html#jCp

This article epitomizes the battle between the sending humans to explore space and the artificial life-form/machine crowds.

I can truly understand the human exploration groups – they are the folks I grew up with during the Gemini/Apollo/Moon-landing eras and I will forever regard those folks as heroes and pioneers.

But as a late middle-aged adult who has followed the Space Age for the past 50 years I see the writing on the wall – economics are determining the course of spaceflight into the Solar System and Universe. And machine explorers are definitely more economical than human ones, especially in the foreseeable future.

I remain hopeful however that individuals like James Cameron and Elon Musk will find economical ways to colonize Mars and eventually nearby planets within 4 – 6 light-years.

Hey, if the Marianas Trench can be explored by folks like Cameron, so can Mars and Alpha Centauri Bb!

Can humans live on Mars?

Of Bracewell Probes, Black Knights, VALIS and NASA’s Unmanned Machines

Bracewell Probe – “…is an interstellar probe theorized by Ronald Bracewell in 1960 that is sent to prospective nearby solar systems to study for life, or primitive civilizations.” ( https://dad2059.wordpress.com/2010/06/08/ancient-bracewell-probe-in-solar-system/)

Black Knight Satellite – “Forbidden History Website Link and Article:

https://forbiddenhistory.info/?q=node/57 

“Black Knight” Satellite

What is the “Black Knight” satellite? It is a mysterious satellite, of unknown origin, discovered in 1960 which shadowed Sputnik. It is believed to have been of extraterrestrial origin, and signaled back old radio waves from the 1920s and 1930s before it disappeared. In short wave patterns analyzed by astronomer Duncan Lunan, it revealed its origin as Epsilon Boötes (or the star system as it was 13,000 years ago).

In “Disneyland of the Gods”, by John Keel, he reports in depth on this satellite:

“In February 1960 the US detected an unknown object in polar orbit, a feat that neither they or the USSR had been able to accomplish. As if that wasn’t enough, it apparently was several sizes larger than anything either country would have been able to get off the ground.

And then, the oddness began. HAM operators began to receive strange coded messages. One person in particular said he managed to decode one of the transmissions, and it corresponded to a star chart. A star chart which would have been plotted from earth 13,000 years ago, and focused on the Epsilon Bostes star system.

On September 3, 1960, seven months after the satellite was first detected by radar, a tracking camera at Grumman Aircraft Corporation’s Long Island factory took a photograph of it. People on the ground had been occasionally seeing it for about two weeks at that point. Viewers would make it out as a red glowing object moving in an east-to-west orbit. Most satellites of the time, according to what little material I’ve been able to find on the black knight satellite, moved from west-to-east. It’s speed was also about three times normal. A committee was formed to examine it, but nothing more was ever made public.

Three years later, Gordon Cooper was launched into space for a 22 orbit mission. On his final orbit, he reported seeing a glowing green shape ahead of his capsule, and heading in his direction. It’s said that the Muchea tracking station, in Australia, which Cooper reported this too was also able to pick it up on radar traveling in an east-to-west orbit. This event was reported by NBC, but reporters were forbidden to ask Cooper about the event on his landing. The official explanation is that an electrical malfunction in the capsule had caused high levels of carbon dioxide, which induced hallucinations.[1]”

Now, I [webmaster] haven’t been able to find reports on this satellite from any news source, but given the recently discovered photos from Russian satellite footage and the stories regarding unknown objects that the early US astronauts saw, I’m inclined to believe this satellite existed. However, the question is its origin- was it a secret US military project, an artifact from earlier in history, or extraterrestrial? The evidence is insufficient to determine the answer.” (http://www.alienscientist.com/forum/showthread.php?2424-The-Black-Knight-Satellite-What-is-it-Where-did-it-come-from)

VALIS – “…is a 1981 science fiction novel by Philip K. Dick. The title is an acronym for Vast Active Living Intelligence System, Dick’s gnostic vision of one aspect ofGod.

[…]Horselover Fat believes his visions expose hidden facts about the reality of life on Earth, and a group of others join him in researching these matters. One of their theories is that there is some kind of alien space probe in orbit around Earth, and that it is aiding them in their quest. It also aided the United States in disclosing the Watergate scandal and the resignation of Richard Nixon in 1974. There is a filmed account of an alternate universe Nixon, “Ferris Freemont” and his fall, engineered by a fictionalised Valis, which leads them to an estate owned by the Lamptons, popular musicians. Valis (the fictional film) contains obvious references to identical revelations to those that Horselover Fat has experienced. They decide the goal that they have been led toward is Sophia, who is two years old and the Messiah or incarnation of Holy Wisdom anticipated by some variants of Gnostic Christianity. She tells them that their conclusions are correct, but dies after a laser accident. Undeterred, Fat goes on a global search for the next incarnation of Sophia. Dick also offers a rationalist explanation of his apparent “theophany”, acknowledging that it might have been visual and auditory hallucinations from either schizophrenia or drug addiction sequelae.

……………

Now what does the above have to do with future NASA machines that will be tele-operated from the orbit of the Earth, Moon and a moon of Mars?

That the end product of the future NASA machines will be intelligent, whether they be pure robotic intelligences, uploaded minds or a combination of both.

Let’s study the possible alien Black Knight/VALIS Bracewell probe first:

Originally posted by Esoterica a member of ATS Post ID 292902 
Thread – http://www.abovetopsecret.com/forum/thread292902/pg1 

I was in a bookstore and was just flipping through a bargain book of weird happenings.  One entry, only a couple of paragraphs long, caught my interest because I had never heard of it before.

The basic blurb was that in 1957, an unknown satellite was detected shadowing the Sputnik I craft.  It was in a polar orbit, something that neither the Americans or Soviets were capable of at the time.  There was a statement that ham radio operaters pickd up radio transmissions that were “decoded” (whatever that means) as being a star map that indicated the craft originated from Epsilon Bootes 13,000 years before.  This object was dubbed “The Black Knight.”

Also in this blurb, there was mention that science fiction author Philip K. Dick believed that he was in contact with this object, which he wrote several novels about, and gave it various names (VALIS, Zebra). 

So obviously intrigued, I did some searching on ATS and found no mention of it.  Google had a few returns which indicated this story was first written about in John Keel’s “Disneyland of the Gods.”  The effort is hampered because there are several legit satellite projects codenamed “Black Knight.”

The information of Dick’s experiences and writings indicated he received visions, and seemed to interperet the experience and object in somewhat Christian religious terms, in addition to strange communications and diagrams he couldn’t interperet.  He eventually became paranoid Russian scientists were attempting to control the satellite.  A science fiction writer infamous for his heavy drug use eventually living out a sci-fi story… seems to me just as likely that it was just his lifestyle catching up to him than any ET communication.  But who knows.

In my searching, I also discovered a very close story from 1927, 30 years earlier.  It involves the phenomena of Long Delayed Echoes.  Essentially, these are radio transmissions that are reflected back, apparently from space, seconds to minutes after they are first sent.  There doesn’t seem to be any rhyme or reason to it.  It could be atmospheric effects just making it appear as if the transmissions are coming from space, or it could ben an alien craft attempting to communicate with us.  Logically, it would send back transmissions it recieved from Earth because it could be almost positive that we could receive it.  Anyway, the story is that Norwegian scientists received strange radio “echoes” in 1927-28.  In the 1970’s Scottish astronomer Duncan Lunan interpereted the delayed transmission as a star map… of Epsilon Bootis.  Whether these are two instances of the same stragne transmissions, or one story is a retelling of the other is unknown to me.  It wouldn’t be the first time the same ideas were repackaged and attempted to be passed off as a “new” anomalous story.

Anyway, I made this thread just to get the story out there, and to ask if anybody has any additional information regarding it.  Below are links to everything pertinent I could find on the internet, and most are just retellings of the same story in different forms.

I have a theory; One billion years ago intelligent life and eventually civilization arose on the second planet of Epsilon Bootes. I have no idea what form these beings had, but they had the ability to manipulate their environment to the point where they built a highly technical civilization. They built space probes to explore their solar system and telescopes to spy upon the stars closest to them and out into the Universe.

Then they observed a small G2 star about 200 light-years from them and with eventually more powerful telescopes, they spied a small, green world dead center of the star’s habitable zone.

They studied and they studied. Their viewing apparatuses evolved to the point where they can see the surface of the green world. They studied the flora and fauna more as time went by. In the meantime however, their own star evolved. The star, which is a K-type, burns hotter and is prone to fierce magnetic storms and flares. And it was due for a slight expansion.

The beings on the second world knew their planet was going to be razed by the expansion and there was no safe haven close by. They had to move their civilization lock, stock and barrel to a safe distance. And the safest distance was out to the seventh world in their solar system. But the planet wasn’t suitable to their form of life. And it was too late to change the planet into one in which they could survive in their present form on it’s surface.

But it wasn’t too late to change themselves.

The change didn’t take long, being real close to a Technological Singularity, their civilization transformed itself into a cyborg/machine culture in which they uploaded their minds into indestructible materials. The original race perished, but their children survived and thrived on the seventh planet.

In the meanwhile, their studies of Sol 3 didn’t stop. By the time the original Epsilon Bootes 2 civilization evolved into the Epsilon Bootes 7 civilization, a creature arose on the green world that caught the collective eye of the Booteans.

And the creature showed the promise of the one trait the Booteans held in high esteem; Intelligence.

Knowing full well they dodged a major extinction event, the Booteans decided they needed to nurture possible intelligence wherever it is found in the Universe, for in their observations Intelligence seemed to be rare, despite the fact that life itself wasn’t.

And they couldn’t believe their incredible good luck in discovering a proto-intelligent species relatively close-by to their own solar system.

So they decide to construct an intelligent probe to send to the planet in order to “help” the creatures along on the evolutionary path to reach their full potential. The probe was outfitted with all kinds of communication devices which are electromagnetic, digital, radio, quantum and what could be described as “telepathic.”

The rest is history. The Bootean probe has been in the L2 zone of the Moon’s orbit for what I guess to be about 7 million years, a relatively short amount of time in the Universe scheme of things, the evolution of intelligent beings and their close proximity to each other in Time and Space.

Could the U.S. military have the probe in its possession and has been trying to access it’s memory for decades? Is the UFO phenomenon all mental hallucinations created by the Probe in order to get us ready to accept the existence of K1, 2 or 3 civilizations?

If we turn our telescopes to Epsilon Bootes, will we find a thriving post-Singularity culture there, or Ascension Fossils?

And will our own NASA probes eventually evolve into intelligent machines that explores our Solar System and nearby stars?

Maybe I’ll get my mind uploaded in a couple of decades and find out for myself!

Planetary Destruction, Earth’s Future?

From The UFO Chronicles:

http://www.space.com/18351-ghost-planet-discovered-devoured-by-its-sun-video.html

Ghost Planet Discovered | VIDEO

, , ,

One Way Interstellar Space Crews

Would you go on an one way interstellar trip to Alpha Centauri? ( Or Proxima if planets were found there? )

The question was put out to the public about one way trips to Mars recently, but interstellar travel is an entirely different animal due to the infinitely longer distances and travel times involved.

But according to Paul Gilster on the Centauri Dreams web site, filling a crew roster might not be a problem:

If you were offered a chance to make an interstellar journey, would you take it? How about a garden-variety trip to low-Earth orbit? I’m often asked questions like this when I make presentations to the public, and I have no hesitation in saying no. Though I’m no longer doing any flight instructing, I used to love flying airplanes, but getting into a rocket and being propelled anywhere is not for me. To each his own: I’m fascinated with deep space and hope many humans go there, and you can count on me to write about their missions and robotic ones as well while keeping my office right here on Earth.

The point is, the percentage of people who actually go out and take the incredible journeys and fly the dangerous missions is vanishingly low. But throughout history, there have always been a few intrepid souls who were willing to get into the canoes or the caravels or the biplanes and open up new territories and technologies. Thank God we have the Neil Armstrongs and Sergei Krikalyovs of this world. And somewhere in England there are the relatives of some young 18th Century adventurer who signed up as a cabin boy and wound up living out his life in Australia. People like this drive the species forward and put into action the yearning for exploration I suspect we all share.

I’ve told this story before, but in the past few weeks a high percentage of the people coming to this site are coming for the first time, so I’ll tell it again. Robert Forward was the scientist who more than any other argued that we study methods for reaching the stars, saying that it could be done without violating the laws of physics and would therefore one day occur. Forward’s son Bob told me what happened one night at dinner when he asked his father whether he would get on a starship if it landed nearby and he was asked to go out and explore the universe, with the proviso that he could never come back. Forward’s response was instantaneous: “Of course!”

To which his wife Martha could only reply: “What about us? You mean you would just leave your family and disappear into the universe?” That made Forward pensive for only a moment as he replied, “You have to understand. This is what I have dreamed about all my life.”

To be fair, if an Earth-type world was ever found at Alpha Centauri, the chances of ever traveling there would be extremely low. It’s just plain cheaper to build super-telescopes to zoom in and literally “scope-out” any kind of life forms and biospheres there. No environmental issues, no contamination and no astronauts need apply.

The only way a planet at Alpha Centauri will be touched by human beings is like in James Cameron’s ‘Avatar.’ An “unobtainium” element with extraordinary abilities would have to be found that would make the time, effort and investments cost-effective to exploit.

As in Solar System exploitation, the reasons to explore extra-solar worlds would have to involve a strong economic element. Even personal freedoms comes in at a distant second.

Deck Hands for a Four Decade Journey

Hunting Dyson Spheres With Kepler Data

From kurzweilai.net:

med_fractaldyson_bowers

Geoff Marcy has received a grant from the UK’s Templeton Foundation to look for Dyson spheres, Paul Gilster writes on Centauri Dreams, the news forum of the Tau Zero Foundation.

Freeman Dyson hypothesized the vast structures over fifty years ago that could ring or completely enclose their parent star. Such structures, the work of a Kardashev Type II civilization — one capable of drawing on the entire energy output of its star — would power the most power-hungry society and offer up reserves of energy that would support its continuing expansion into the cosmos, if it so chose.

Marcy’s plan is to look at a thousand Kepler systems for telltale evidence of such structures by examining changes in light levels around the parent star.

Interestingly, the grant of $200,000 goes beyond the Dyson sphere search to look into possible laser traffic among extraterrestrial civilizations. Says Marcy:

Technological civilizations may communicate with their space probes located throughout the galaxy by using laser beams, either in visible light or infrared light. Laser light is detectable from other civilizations because the power is concentrated into a narrow beam and the light is all at one specific color or frequency. The lasers outshine the host star at the color of the laser.

The topic of Dyson spheres calls Richard Carrigan to mind. The retired Fermilab physicist has studied data from the Infrared Astronomical Satellite (IRAS) to identify objects that radiate waste heat in ways that imply a star completely enclosed by a Dyson sphere. This is unconventional SETI in that it presumes no beacons deliberately announcing themselves to the cosmos, but instead looks for signs of civilization that are the natural consequences of physics.

Carrigan has estimated that a star like the Sun, if enclosed with a shell at the radius of the Earth, would re-radiate its energies at approximately 300 Kelvin. Marcy will turn some of the thinking behind what Carrigan calls ‘cosmic archaeology’ toward stellar systems we now know to have planets, thanks to the work of Kepler. Ultimately, Carrigan’s ‘archaeology’ could extend to planetary atmospheres possibly marked by industrial activity, or perhaps forms of large-scale engineering other than Dyson spheres that may be acquired through astronomical surveys and remain waiting in our data to be discovered. All this reminds us once again how the model for SETI is changing.

For more, see two Richard Carrigan papers: “IRAS-based Whole-Sky Upper Limit on Dyson Spheres,” Journal of Astrophysics 698 (2009), pp. 2075-2086 (preprint), and “Starry Messages: Searching for Signatures of Interstellar Archaeology,” JBIS 63 (2010), p. 90 (preprint). Also see James Annis, “Placing a limit on star-fed Kardashev type III civilisations,” JBIS 52, pp.33-36 (1999).

A recent Centauri Dreams story on all this is Interstellar Archaeology on the Galactic Scale but see also Searching for Dyson Spheres and Toward an Interstellar Archaeology .

The Dyson Sphere Hypothesis is an extrapolation of 1950s technologies and theories that claim that advanced societies will need more and more energy, spouting radiation and radio waves all over the place. Dyson theorized that civilizations as they grew should be detectable in the infrared radiation range, the waste heat being the thing that is the signature of a Kardashev II civilization.

Little did we realize then that as our technology advanced, it required less and less energy to supply it, and that’s not counting digital technology that doesn’t broadcast out into the Cosmos!

So is looking for Dyson Spheres/Swarms a waste of time? I don’t think so. Simply because of the fact that aliens by large might not think like humans and some might prefer a brute force approach of providing their civilizations the energy they require.

Plus stellar archaeology is cool!

Dyson sphere hunt using Kepler data .

Interview: Lee Billings

From blogs.plos.org:

Like many geeks of the post-Sputnik generation, I grew up hoping that space travel would be common by the time I reached middle age. Weaned on a youthful diet of speculative fiction by the likes of Ray Bradbury and Arthur Clarke, raised on Star Trek and The Outer Limits, and thrilled by real-life hero Neil Armstrong’s “one small step” onto the gravelly surface of the Moon when I was in elementary school, it never occurred to me that humankind’s manifest destiny in the stars would be undone by changing political winds, disasters like the Challenger explosion, and a mountain of debt to pay for misguided military adventures like the War in Iraq.

It’s true that, in some ways, we’re living in a new golden age for space nerds. Bard Canning’s gorgeously enhanced footage of Curiosity’s descent to Mars — made instantly available by the global network we built instead of a Hilton on the Moon — certainly beats  grainy snippets beamed down from Tranquility Base. A newly discovered exoplanet that “may be capable of supporting life” seems tomake headlines every few months. Cassini’s ravishing closeups of Saturnregularly put the fever dreams of ILM’s animators to shame. But wasn’t I supposed to be “strolling on the deck of a starship” by now, as Paul Kantner’s acid-fueled hippie space epic Blows Against the Empire promised me when it was nominated for a Hugo award in 1971?

The problem, it turns out, isn’t just a loss of political will to finance manned space flight. Rocket science turns out to be rocket science — not easy, and constrained by some very real limitations dictated by material science, the physics of acceleration, and the unwieldy economics of interstellar propulsion. Until a real-life Zefram Cochrane comes along to invent a practical warp drive, I may not be sightseeing on any Class M planets anytime soon.

One of the best briefings on the state of the art of interstellar exploration is Lee Billings’ essay “Incredible Journey,” recently reprinted in a wonderful new anthology called The Best Science Writing Online 2012, edited by Scientific American’s Bora Zivkovic and Jennifer Ouellette. I’m very honored to have a piece in the anthology myself: my NeuroTribes interview with John Elder Robison, author of the bestselling memoir of growing up with autism, Look Me in The Eye, and other books. When SciAm’s editors suggested that each author in the book interview one of the other authors, I jumped at the chance to interview Billings about his gracefully written and informative article about the practical challenges of space flight. Billings is a freelance journalist who has written forNatureNew ScientistPopular Mechanics, and Seed. He lives outside New York City with his wife, Melissa.

[…]

Steve Silberman: Before we even get into the meat of your piece, I want to mention how impressed I was by the power and lyricism of your writing. Phrases like “the cosmos suddenly becomes less lonely” and “the easiest way the Daedalus volunteers found to fuel their starship was, in effect, the industrialization of the outer solar system” make vast and highly abstract concepts immediately comprehensible and visceral to lay readers. What made you want to become a science writer, and who are your role models for writing, in any genre?

Lee Billings: My attraction to science preceded my attraction to the act of writing, perhaps because, like every child, I was intensely curious about the world around me. Science, more so than any other source of knowledge I could find, seemed to change the world into something at once eminently understandable and endlessly mysterious.

I became interested in science writing, science journalism, at approximately the same time I realized I would make a poor scientist. I was midway through my college prerequisites, thinking I was on a path to a career in neuroscience. I’d been having a lot of trouble with the more quantitative courses — calculus, organic chemistry, and so on. Many of my friends would ace their assignments and tests after sleeping through lectures and rarely cracking a book. I would study hard, only to receive poor grades. Meanwhile I was breezing through courses in English, literature, history, and art. After a particularly fervent all-night cram-session for a final exam that I still almost flunked, I decided if I wasn’t destined to excel within science itself, perhaps I could instead try to make my mark by helping communicate the world-changing discoveries scientists were making. So I switched my academic emphasis from neuroscience to journalism, and became something of a camp follower, scavenging and trailing behind the gifted few at the front lines of research. I’ve never looked back, and have no regrets. The job never gets old: Rather than being at best a mediocre, hyper-specialized bench worker, being a science writer lets me parachute in to varied fields on a whim, and invariably the brilliant individuals I find upon landing are welcoming and happy to talk to me.

As for influences… I still have a long way to go, but if my writing ever comes to possess a fraction of Carl Sagan’s charisma and elegance, John McPhee’s structure and eye for detail, Richard Preston’s depth of focus and cinematic flair, Stanislaw Lem’s imagination and analytic insight, or Ray Bradbury’s lyrical beauty, I will be a happy man.

Ray Bradbury's "The Martian Chronicles"

Ray Bradbury’s “The Martian Chronicles”

Silberman: Several times a year now, we hear about the discovery of a new exoplanet in the “Goldilocks zone” that could “potentially support life.” For example, soon after he helped discover Gliese 581g, astronomer Steven Vogt sparked a storm of media hype by claiming that “the chances for life on this planet are 100 percent.” Even setting aside the fact that the excitement of discovering a planet in the habitable zone understandably seems to have gone to Vogt’s head at that press conference, why are such calculations of the probability of life harder to perform accurately than they seem?

Billings: The question of habitability is a second-order consideration when it comes to Gliese 581g, and that fact in itself reveals where so much of this uncertainty comes from. As of right now, the most interesting thing about the “discovery” of Gliese 581g is that not everyone is convinced the planet actually exists. That’s basically because this particular detection is very much indirect — the planet’s existence is being inferred from periodic meter-per-second shifts in the position of its host star. The period of that shift corresponds to the planet’s orbit as it whips from one side of the star to the other; the meter-per-second magnitude of the shift places a lower limit on the planet’s mass, but can’t pin down the mass exactly. So that’s all this detection gives you — an orbit and a minimum mass. That’s not a lot to go on in determining what a planet’s environment might actually be like, is it?

Now, get up and walk around the room. You’re moving at about a meter per second. Imagine discerning that same rate of change in the motion of a million-kilometer-wide ball of plasma, a star many light-years away. Keep in mind this star’s surface is always moving, in pounding waves and swirling eddies, in rising and falling convection cells, in vast plasmatic prominences arcing above the surface, often at many kilometers per second. At any particular moment, all that stellar noise can swamp the faint planetary signal. Only by building up hundreds or thousands of careful measurements over time can you get that crucial periodicity that tells you what you’re seeing might be a planet. So the measurement is quite statistical in nature, and its interpretation can change based on the statistical assumptions being used. This is further complicated by the fact that planets are rarely singletons, so that any given stellar motion may be the product of many planets rather than one, requiring careful long-term study to tease apart each world’s contribution to the bulk signal. It’s also complicated by the instability of astronomical instruments, which must be kept carefully, constantly calibrated and stabilized lest they introduce spurious noise into the measurements. In the case of Gliese 581g, not everyone agrees on the putative planetary signal actually being caused by a planet, or even being real at all — the signal doesn’t seem to manifest equally in the handful of instruments purportedly capable of detecting it.

So it’s very difficult to just detect these things, and actually determining whether they are much like Earth is a task orders of magnitude more difficult still. Notice how I’m being anthropocentric here: “much like Earth.” Astrobiology has been derisively called a science without a subject. But, of course, it does have at least one subject: our own living planet and its containing solar system. We are forced to start from what we know, planting our feet in the familiar before we push out into the alien. That’s why we, as a species, are looking for other Earth-like planets — they probably offer us the best hope of recognizing anything we might consider alive. It’s not the strongest position to be in, but it’s the best we’ve got. Calculating the probability of life on an utterly alien world outside the solar system for which we know only the most basic information — its mass, its orbit, maybe its radius — is at this stage a very crude guess. The fact is, we still don’t know that much about how abiogenesis occurred on Earth, how life emerged from inanimate matter. There are very good physical, chemical, thermodynamic reasons to believe that life arose here because our planet was warm, wet, and rocky, but we really don’t yet know all the cogent occurrences that added up to build the Earth’s earliest organisms, let alone our modern living world. A warm, wet, rocky planet may be a necessary but not a sufficient condition for life as we know it to form and flourish.

Lee Billings with planet hunter Geoff Marcy

Lee Billings with planet hunter Geoff Marcy

This is really a chicken-and-egg problem: To know the limits of life in planetary systems, we need to find life beyond the Earth. To find life beyond Earth, it would be very helpful to know the limits of life in planetary systems. Several independent groups are trying to circumvent this problem by studying abiogenesis in the lab — trying to in effect create life, alien or otherwise, in a test tube. If they manage to replicate Earth life, the achievement could constrain just how life emerged on our own planet. If they somehow manage to make some single-celled organism that doesn’t use DNA, or that relies on silicon instead of carbon to build its body, or that prefers to swim in liquid ethane rather than liquid water, that gives us a hint that “Earth-style” biologies may only be one branch in a much larger and more diverse cosmic Tree of Life.

Silberman: Going deeper than the notion of the cosmos feeling “less lonely” – as well as the fact that we all grew up watching Star Trek and Star Wars and thinking that aliens are frickin’ cool (as long as they’re not the mama alien fromAlien) — why do you think people are so motivated to daydream about extraterrestrial life? What need in us do those dreams fulfill?

Billings: I don’t really think most people are necessarily motivated to daydream about just any sort of extraterrestrial life. It will probably take more than a microbe or a clam to excite most of our imaginations, even if that microbe happens to be on Venus or that clam happens to be on Mars.

I do think humans are motivated to daydream about extraterrestrial intelligence, and, to put a finer point on it, extraterrestrial “people.” They are motivated to dream about beings very much like them, things tantalizingly exotic but not so alien as to be totally incomprehensible and discomforting. Maybe those imagined beings have more appendages or sense organs, different body plans and surface coverings, but they typically possess qualities we recognize within ourselves: They are sentient, they have language, they use tools, they are curious explorers, they are biological, they are mortal — just like humans. Perhaps that’s a collective failure of imagination, because it’s certainly not very easy to envision intelligent aliens that are entirely divergent from our own anthropocentric preconceptions. Or perhaps it’s more diagnostic of the human need for context, affirmation, and familiarity. Why are people fascinated by their distorted reflections in funhouse mirrors? Maybe it’s because when they recognize their warped image, at a subconscious level that recognition reinforces their actual true appearance and identity.

More broadly, speculating about extraterrestrial intelligence is an extension of three timeless existential questions: What are we, where do we come from, and where are we going? The late physicist Philip Morrison considered SETI, the search for extraterrestrial intelligence, to be the “archaeology of the future,” because any galactic civilizations we could presently detect from our tiny planet would almost certainly be well more advanced than our own. It’s unlikely that we would ever receive a radio message from an alien civilization in the equivalent of our past Stone Age, and it’s unlikely Earth would ever be visited by a crewed starship that powered its voyage using engines fueled by coal or gasoline. Optimists consider this, and say that making contact with a superior alien civilization could augur a bright future for humanity, as it would suggest there are in fact solutions to be found for all the current seemingly intractable problems that threaten to destroy or diminish our species. It’s my opinion that most people think about aliens as a way of pondering our own spectrum of possible futures.

I’m inclined to believe some of the things Billings has to say in that it’s doubtful we’ll build anything like a starship in the near future and folks ( taxpayers ) just won’t fund those kinds of projects. Entrepreneurs such as Elon Musk, James Cameron and Peter Diamandis could in the future fund projects such as starprobes and starships – only if they prove profitable.

IMO it looks like stronger telescopes both on Earth and in space will be the only human built machines exploring the closer solar systems for any signs of life and extant civilizations because they can be economically constructed – and if they found anything interesting, the items are still a safe distance away.

Five Billion Years of Solitude: Lee Billings on the Science of Reaching the Stars

Are People the Biggest Challenge to Interstellar Travel?

From msnbc.msn.com:

The biggest challenge in mounting a space mission to another star may not be technology, but people, experts say.

Scientists, engineers, philosophers, psychologists andleaders in many other fields gathered in Houston last week for the 100 Year Starship Symposium, a meeting to discuss launching an interstellar voyage within 100 years.

“It seems like it would be so hard, and the biggest obstacle is ourselves. Once we get out of our way, once we commit to this, then it’s a done deal,” said former “Star Trek: The Next Generation” actor LeVar Burton, who is serving on the advisory committee of the 100 Year Starship project.

The initiative hopes to spur the development of new propulsion technologies, life support systems, starship and habitat designs, as well as myriad other necessaryinnovations, to send a vehicle beyond our solar system — where no manmade object has yet traveled — and to another star. As the closest stars to the sun are still light-years away, such a feat will be daunting. [How Interstellar Space Travel Works (Infographic)]

But Burton wasn’t the only one who said the most difficult part of interstellar spaceflight may be corralling public and governmental support, and getting the right thinkers to work together to attack the problem.

“I think the greatest challenges are going to be what the greatest challenges in anything are, and that’s the people piece,” said former NASA astronaut Mae Jemison, who was the first African-American woman to travel to space. Jemison is heading the new 100 Year Starship organization, which was founded with seedmoney from the Defense Advanced Research Projects Agency (DARPA).

“The really exciting thing and the scary thing is I know I can’t do it by myself, but there are a lot of people who want to help,” Jemison added.

Interstellar spaceflight for humanity isn’t inevitable, she said — merely imperative.

“We could screw it up,” Jemison told Space.com. “We could decide not to do it. But I can tell you what, if we don’t figure out how to do it, then we probably aren’t going to be around to worry about whether the sun turns into a red gas giant. Unless we find some focal aspiration that pushes us further, that helps us see ourselves as a species that we should be cooperating with, we’re going to be in trouble.”

Plus, if human beings can solve the challenges of interstellar spaceflight, in the process they will have solved many of the problems plaguing Earth today, experts said. For example, building a starship will require figuring out how to conserve and recycle resources, how to structure societies for the common well-being, and how to harness and use energy sustainably.

Perhaps the 100 Year Starship Symposium should partner up with the Build The Enterprise Project? They have a 100 year timeline also and I couldn’t think of a better marriage.

The biggest challenge to interstellar spaceflight? Us 

Sister Earths

Robots and UFOs

From Scott Corrales’ Inexplicata :

In 1920, when Karel Capek wrote the three-act play R.U.R. (Rossum’s Universal Robots) he probably didn’t realize he would be changing humanity’s conception of what it is to be alive for generations to come, much less had the word “robot” to the world’s collective glossary. Derived from the Slavic term “robota”, meaning the work done by an indentured servant, robots have gone on to become a staple of science-fiction. We take their functions and existence for granted, with our own efforts at robotics ranging from industrial mechanical arms to the new wave of lovely Japanese automata. According to our age group, we look back fondly at either Robbie the Robot or Artoo-Detoo and See-Threepio. Perhaps some even remember seeing the graceful “María” making her appearance for the first time in Fritz Lang’s Metropolis

Only a year after “R.U.R.” appeared on the stage, French director André Deed created one of the first science-fiction movies involving robots: L’uomo Meccanico (The Mechanical Man), depicting a giant humanoid robot created for criminal purposes, but who is checked by another equally sizeable machine, settling their differences inside an Italian opera house. These original “rock’em-sock’em robots” showed audiences that the mechanical men, while emotionless, could serve the cause of good as well as evil.

Rampaging Robots

In an article for SAGA UFO Report (UFO Annual, 1975), Otto Binder wrote: “[Robots represent] a rather rare category of UFOnauts, but one that cannot be ignored. Witnesses often describe these creatures as having stiff movements and also having angular lines quite unlike living human beings. These strange entities range from the uncanny to the eerie.” He goes on to add: “We can logically assume that some worlds do not send their living explorers to Earth, but use robots somewhat like the Russian mobile vehicle on the Moon. But apparently the aliens have perfected observation vehicles in the form of living creatures.” Binder refers to the automated Lunakhod probe, but a more updated example would be our own Curiosity rover on Mars, about to engage on a study of the red planet in 2012.

UFO encounter reports from the late 1960’s and the early to mid-1970’s often described encounters with robotic entities emerging from UFOs or conducting their activities in areas where UFO activity was common. Researchers at the time conceded that organic ufonauts could, on occasion, entrust certain missions to mechanical creations much in the same way that our planet’s space programs launch unmanned probes to destinations within the solar system. The robotic alien, for want of a better term, became one of the four or five “recognized and accepted” types of possible UFO occupant.

Did robots from another planet visit Avon, Connecticut in September 1967? Police officers found themselves responding to frightened calls from the public involving a “shiny-suited robot” in the vicinity of Talcott Mountain. The seemingly mechanical entity appeared to be engaged in some sort of frantic semaphore, trying to stop drivers along Route 44. Descriptions of the entity coincided in aspects such as a cowl or helmet that completely enshrouded the figure’s features, and its stiff movements as it wobbled on the road’s shoulder, trying to stop traffic. Police officers reported to the scene, but were unable to find any trace of the intruder.

In February 1981, Luis Dominguez, proprietor of small food and beverage concern in the village of Fuentecén in Spain had a brush with the unknown that led him to believe that ‘robots” of unknown provenance had visited his small community.

Between 2:00 and 3:00 a.m. on February 13 of that year, Dominguez had closed down his business and was heading home when two red lights caught his attention. Thinking it might be the taillights of car being used to commit burglaries in the wee hours of the morning, he headed in their direction, hoping to take the law into his own hands, but the would-be vigilante was floored by what happened next: the “taillights” rose into the air, made an odd twisting turn to the right, and landed elsewhere in the countryside. By his own admission, the unnatural sight made him break out in goosebumps.

Speeding back home, from where the red lights were still visible, Dominguez, his wife and son watched nervously as the lights engaged in a variety of movements, some of the undulating. Most spectacular of all was a sudden flash or beam of white light fired from the source of the two red ones, illuminating all the homes of Fuentecén as if by a giant klieg lamp.

It was then that Dominguez heard his dog bark. The family pet, ominously named “Satán”, was outside the house barking at an object near to fence that encircled the property. Dominguez realized described it as a box-like contraption resembling a washing machine or small refrigerator, taller than the fence by a few inches. It had neither head nor appendages.

The curious object disappeared when Dominguez armed himself with courage and a flashlight and stepped outside for a closer look. However, he made a startling remark to J.J. Benítez: “the dog would bark at it and the object, from the very edge of the fence, would answer it with a very slow “bark” that was slower and muted. It may seem ridiculous, but I swear it’s true. We got the sensation that the thing was imitating our dog.”

The following day, while returning from school, Jose Francisco Dominguez excitedly told his father that a patch of burned vegetation was now in evidence at the site where the red “taillights” had been seen the night before: in fact, a patch measuring some five square meters of desiccated–rather than burned –grass was found in a field. The case attracted the interest of a number of local newspapers, which in turn prompted government ministries to take an interest in it. Subsequent analysis revealed no traces of radiation at the site.

Willy Rodriguez was an avid fisherman who enjoyed practicing the sport in the waters of the Esla River, not far from the monastery of Santa María de Moreruela in the Spanish province of Zamora. During the quiet hours of an early morning in the spring of 1974, Rodríguez’s two dogs began to bark furiously for no reason. Chiding his animals for spooking away the fish, the man later became aware of a bizarre figure, standing over six feet tall, with its arms held closely to the sides of its body, “like a soldier”, according to his description. In the sunlight, the strange entity looked as though it had been made of silver. Once recovered from the shock, he ordered his dogs to attack the strange metallic form, which simply glided away toward a nearby hill, and then vanished.

While may have questioned his claim, Rodriguez is adamant that the silvery presence he saw in the spring of 1974 “wasn’t a person – it was artificial. I think it was a sort of robot that came out of a flying saucer and answered to its commands,” he told Iker Jiménez and viewers of the Cuarto Milenio television program.

Spain’s own Antonio Ribera made a significant caveat when it came to cases involving humanoid occupants: “We must not exclude the hypothesis of biological robots created by an extremely advanced Science. Such robots would bear no resemblance to the crude robots of our science-fiction, full of nuts and bolts and electronic cells, but would be actual living being.” (FSR, “The Landing at Villares del Saz”). This dovetails, interestingly enough, with the physical appearance robots presented by Karel Capek’s “R.U.R.” – human looking in every way, and capable of emotion.

As mankind extends its explorations throughout the Solar System and eventually into interstellar space, semi-intelligent beings will evolve into intelligent entities that will become our surrogates to the Universe.

So it stands to reason the process has already occurred in the Milky Way galaxy and we are ( have been ) visited by intelligent machines.

Machines From Elsewhere: Robots and UFOs

Hat tip to the Daily Grail.

SETI, ETI Civilization Detection and UFOs

When one discusses the UFO flying saucer phenomenon, the idea of civilizations coming to Earth and how they get here becomes moot because the mode is obvious — the flying saucer is a spaceship that transcends space and time and is technology many hundreds, if not thousands of years ahead of ours.

But mainstream science claims — “Not so fast. Einstein claimed that nothing can go faster than the speed of light in this Universe. Things that appear to transcend that speed are fake and optical illusions. If aliens come here, it will be in slower-than light vessels that are easily detected.”

I find that idea interesting, especially if there are civilisations thousands of millenia ahead of us are actually noticing us, they are using technologies that are magical to us.

Anything else, they are not as advanced as we think they are:

SETI always makes us ask what human-centered assumptions we are making about extraterrestrial civilizations. When it comes to detecting an actual technology, like the starships we’ve been talking about in the last two posts, we’ve largely been forced to study concepts that fit our understanding of physics. Thus Robert Zubrin talks about how we might detect a magsail, or an antimatter engine, or a fusion-powered spacecraft, but he’s careful to note that the kind of concepts once studied by the Breakthrough Propulsion Physics Project at NASA may be undetectable, since we really don’t know what’s possible and what its signature might be.

I mentioned zero-point energy in a previous post because Zubrin likewise mentions it, an idea that would draw from the energy of the vacuum at the quantum level. Would a craft using such energies — if it’s even possible — leave a detectable signal? I’ve never seen a paper on this, but it’s true that one classic paper has looked at another truly exotic mechanism for interstellar travel, the wormhole. These shortcuts through spacetime make space travel a snap. Because they connect one part of the universe to another, you go in one end and come out the other, emerging into another place and, for all we know, another time.

The fact that we don’t know whether wormholes exist doesn’t mean we can’t think about how to detect one, although the authors of the classic paper on wormhole detection make no assumptions about whether or not any intelligent species would actually be using a wormhole. The paper is “Natural Wormholes as Gravitational Lenses,” and it’s no surprise to find that its authors are not only wormhole specialists like Matt Visser and Michael Morris, but physicists with a science fiction connection like John Cramer, Geoffrey Landis, Gregory Benford and the formidable Robert Forward.

Image: A wormhole presents a shortcut through spacetime. Can one be detected? Credit: Wikimedia Commons.

The analysis assumes that the mouth of a wormhole would accrete mass, which would give the other mouth a net negative mass that would behave in gravitationally unusual ways. Thus the GNACHO (gravitationally negative anomalous compact halo object), which playfully echoes the acronym for massive compact halo objects (MACHOs). Observationally, we can look for a gravitational lensing signature that will enhance background stars by bending light in a fundamentally different way than what a MACHO would do. And because we have MACHO search data available, the authors propose checking them for a GNACHO signature.

In conventional gravitational lensing, when a massive object moves between you and a much more distant object, a greatly magnified and distorted image of the distant object can be seen. Gravitational lensing like this has proven a useful tool for astrophysicists and has also been a means of exoplanet detection. But when a wormhole moves in front of another star, it should de-focus the light and dim it. And as the wormhole continues to move in relation to the background star, it should create a sudden spike of light. The signature, then, is two spikes with a steep lowering of light between them.

The authors think we might find the first solid evidence for the existence of a wormhole in our data by looking for such an event, saying “…the negative gravitational lensing presented here, if observed, would provide distinctive and unambiguous evidence for the existence of a foreground object of negative mass.” And it goes without saying that today’s astronomy, which collects information at a rate far faster than it can be analyzed, might have such evidence tucked away in computer data waiting to be discovered by the right search algorithms.

Would a wormhole be a transportation device? Nobody knows. Assuming we discover a wormhole one day, it would likely be so far away that we wouldn’t be able to get to it to examine its possibilities. But it’s not inconceivable that a sufficiently advanced civilization might be able to create an artificial wormhole, creating a network of spacetime shortcuts for instantaneous travel. Matt Visser has discussed a wormhole whose mouth would be held open by negative energy, ‘…a flat-space wormhole mouth framed by a single continuous loop of exotic cosmic string.’ A primordial wormhole might survive from the early universe. Could one also be created by technology?

It is my theory that if we do not build worm-holes — our AI partners, and/or successors will be able to invent and construct them.

So that begs the question — “Are flying saucers constructed by biological beings, or AI/cybernetic creatures?”

Exotic Detections: Wormholes and Worldships