NASA Finally Chooses New Crew Vehicles
From Space.com:
American astronauts will soon have new homegrown rides into space.
After a four-year competition, NASA has tapped the commerical spaceflight companies SpaceX and Boeing to launch astronauts to the International Space Station from U.S. soil by 2017, agency officials announced today (Sept. 16). If all goes according to plan, the two companies will reduce or end NASA’s dependence on Russia for its orbital taxi service. Russia’s Soyuz has been NASA’s only crew access to space since the space shuttle fleet retired in 2011.
“Today’s announcement sets the stage for what promises to be the most ambitious and exciting chapter in the history of NASA and human spaceflight,” NASA Administrator Charles Bolden told reporters today. [SpaceX’s Manned Dragon Spaceship in Pictures]
The choice reflects a melding of old and new; Boeing has been an aerospace mainstay for decades, while billionaire entrepreneur Elon Musk founded SpaceX just a dozen years ago, in 2002.
NASA has picked SpaceX’s Dragon Version 2 manned spacecraft (left) and Boeing’s CST-100 space capsule to fly American astronauts to and from low-Earth orbit from U.S. soil for the first time since the shuttle fleet’s retirement in 2011. NASA announced the decision on Sept. 16, 2014 in a press conference at the Kennedy Space Center in Florida.
Credit: SpaceX/BoeingFilling the shuttle’s shoes
SpaceX’s Dragon Version 2 spacecraft is a manned space capsule designed to fly seven astronauts to and from low-Earth orbit. See how SpaceX’s Dragon V2 spacecraft works in this Space.com infographic.
Credit: by Karl Tate, Infographics ArtistSpaceX and Boeing are splitting NASA’s $6.8 billion Commercial Crew Transportation Capability award, or CCtCap, the latest in a series of contracts set up in 2010 to encourage the development of private American manned spaceships. SpaceX will get $2.6 billion and Boeing will receive $4.2 billion, officials said. [Boeing’s CST-100 Space Capsule in Photos]
NASA is looking to the private sector to fill the crew-carrying shoes of the space shuttle fleet, which was retired in 2011 after 30 years of orbital service. For the past three years, the agency has relied on Russian Soyuz capsules to fly its astronauts to and from space — recently, at a cost of more than $70 million per seat.
NASA officials have said they want at least one American commercial vehicle to be up and running by late 2017. A domestic capability to and from low-Earth orbit could not only cut costs but also free the agency to work on getting people to more distant and difficult destinations such as Mars, Bolden said.
Four companies have been major players in NASA’s ongoing commercial crew competition: SpaceX, Boeing, Blue Origin and Sierra Nevada. SpaceX and Boeing are building capsules called Dragon and the CST-100, respectively. Blue Origin has been developing a conical craft called the Space Vehicle, while Sierra Nevada’s entry was a space plane called Dream Chaser.
Like SpaceX, Blue Origin is led by a billionaire — in this case, Amazon.com founder Jeff Bezos.
Today’s announcement apparently takes Blue Origin and Sierra Nevada out of the mix, but it doesn’t eliminate competition from the commercial crew program. Under the CCtCap contracts, both Boeing and SpaceX will be required to go through a rigorous certification process, which will include at least one manned demonstration mission to the space station, NASA officials said.
“NASA is committed to ensuring these systems are held to the same rigorous safety standards as previous human spaceflight programs,” said NASA commercial crew program manager Kathy Lueders.
After completing certification, Dragon and the CST-100 will each fly at least two, and perhaps as many as six, crewed NASA missions to and from the space station, Lueders added. Each of these crewed flights will carry four astronauts.
NASA will continue using both capsules as long as they meet the agency’s requirements, Bolden said.
Meet Dragon and the CST-100
Boeing is developing the CST-100 capsule for use ferrying astronauts to Earth orbit and to the International Space Station. See how Boeing’s CST-100 spacecraft works in this Space.com infographic.
Credit: Karl Tate, SPACE.com ContributorBoth Dragon and the CST-100 are reusable vehicles designed to carry seven passengers. (CST-100’s name, incidentally, derives from “Crew Space Transportation” and 100 kilometers, or 62 miles — the traditional altitude boundary that marks the beginning of outer space.)
Dragon is an upgraded, manned version of the robotic capsule SpaceX uses to fly cargo missions to the space station under a separate, $1.6 billion NASA contract. The crew capsule will ride to space aboard SpaceX’s Falcon 9 rocket, as the cargo variant does.
The CST-100, meanwhile, will be lofted by United Launch Alliance’s Atlas 5 rocket. The Atlas 5 currently uses a Russian RD-180 engine, but that may change soon; United Launch Alliance — a joint venture of Boeing and Lockheed-Martin — is reportedly tapping Blue Origin to build a new, homegrown engine for the rocket.
Both capsules will launch from NASA’s Kennedy Space Center in Florida, officials said.
It’s too bad Sierra Nevada didn’t get a little money thrown its way, it would’ve been nice to have a mini-shuttle flying by 2017.
All in all, SpaceX has the most modern capsule design and it will serve NASA and commercial concerns for many years.
Mars anyone?
Space.com: Moon Rovers Planned for Commercial Lunar Exploration Project
From the article:
The commercial spaceflight company Golden Spike – which aims fly private missions to the moon by 2020 – has teamed up with the New York-based firm Honeybee Robotics to design robotic rovers for the planned lunar expeditions.
“We’re very proud to be working with Honeybee, which has tremendous experience and a record of successful performance in the development of flight systems for NASA,” Golden Spike President and CEO Alan Stern said in a statement last month.
Golden Spike first announced its goal of launching two-person commercial flights to the moon in December 2012. To boost the scientific output of the expeditions, the company plans to send unmanned rovers to the moon ahead of the crew to collect samples from a wider area than the crew will be able to travel from their landing pad. The rovers will then meet up with the crew’s spacecraft once it arrives, according to the mission plan. [Golden Spike’s Private Moon Mission Plan in Pictures]
“Honeybee brings a unique body of knowledge and skills to help us augment the capabilities of human exploration missions with advanced robotics,” Clive Neal, a researcher at the University of Notre Dame in Indiana and chair of Golden Spike’s lunar science advisory board, said in a statement. “Their participation is a key step forward in helping Golden Spike change the paradigm of human space exploration, through the development of highly capable lunar exploration system architecture for customers around the world.”
Honeybee Robotics has been designing planetary sampling devices for clients including NASA and the US Department of Defense for more than 25 years, and has contributed to the last three of NASA’s Mars landers: The company designed the rock abrasion tool for NASA’s Mars Exploration Rovers Spirit and Opportunity, as well as the icy soil acquisition device (or “Phoenix Scoop”) for the U.S. space agency’s Phoenix Mars lander, and the sample manipulation system and dust removal tool for the Curiosity rover.
Golden Spike officials initially priced the missions at $1.5 billion per person, but has since estimated that the cost could drop down to about $750 million with the help of media coverage and sales of merchandising rights of the missions, Stern told reporters last year at the 29th National Space Symposium in Colorado Spring, Colo. Potential moon flyers include leaders of nations, large corporations, and independently funded individuals.
The companies plan to complete preliminary tests of their rover design by mid-2014.
The cost of the landers and other equipment were the long poles in the tent of NASA’s old Constellation program.
It will be interesting to see if Golden Spike’s plan will work to bring these expenses down. I surely hope so.
Moon Rovers Planned for Commercial Lunar Exploration Project
Space Oddity Part Deux / Small Colleges Pushing Out Poor Kids
From slashdot.org:
An anonymous reader writes “With updated lyrics, Commander of Expedition 35 on the International Space Station, Chris Hadfield, sings Space Oddity on board the International Space Station. He’s not Bowie, but he’s pretty good.”
http://www.youtube.com/watch?feature=player_embedded&v=KaOC9danxNo
____________________
From slashdot.org:
An anonymous reader writes “A change from ‘need’ based financial aid to a ‘merit’ based system coupled with a ‘high tuition, high aid,’ model is making it harder for poor students to afford college. According to The Atlantic: ‘Sometimes, colleges (and states) really are just competing to outbid each other on star students. But there are also economic incentives at play, particularly for small, endowment-poor institutions. “After all,” Burd writes, “it’s more profitable for schools to provide four scholarships of $5,000 each to induce affluent students who will be able to pay the balance than it is to provide a single $20,000 grant to one low-income student.” The study notes that, according to the Department of Education’s most recent study, 19 percent of undergrads at four-year colleges received merit aid despite scoring under 700 on the SAT. Their only merit, in some cases, might well have been mom and dad’s bank account.'”
Hat tip to the Daily Grail
………………..
No more poor smart kids to sing ‘Space Oddity.’
On the serious side, this is the effects of thirty years of St. Ronnie of Reagan’s economic policies and social Darwinism.
Falcon Heavy or Space Launch System For Lunar Exploration ?
From America Space:
There have been occasional suggestions that NASA should scrap its Space Launch System (SLS) in favor of SpaceX’s Falcon Heavy for fulfilling its beyond low-Earth orbit needs [1]. The claim forwarded by some is that the as-yet-untested-and-unflown 53 mt low-Earth orbit (LEO) (200 km @ 28°) Falcon Heavy is now “cheaper” than the as-yet-untested-and-unflown SLS. Furthermore, canceling the SLS would supposedly save NASA $10 billion—money that could otherwise be used to fund such programs as the Commercial Crew integrated Capability (CCiCap), to conduct a flight test of Orion on a Falcon Heavy, and to focus on building a small-scale space station in the area near the Moon. One issue not addressed by proponents of canceling SLS is whether it is a good idea to couple a nation’s human exploration spaceflight capabilities to a private company. An issue which appears to be altogether ignored, is the Falcon Heavy’s small lunar payload capability and the impact this would have on an already complex and risky endeavor such as lunar exploration.
According to SpaceX, the Falcon 9 Heavy, also called the Falcon Heavy, will have a 53 mt (metric ton) payload capacity to LEO of 200 km with an inclination of 28° [2]. Such a LEO payload capability will be impressive, allowing SpaceX to launch nearly twice the payload of a Delta IV Heavy or an Atlas V, and to do so more cheaply than either. But when it comes to launching payload to a geostationary transfer orbit (GTO) or beyond, the Falcon 9 Heavy falls far short of either the Delta or Atlas launchers. With a GTO payload of barely over 12 mt, the Falcon 9 Heavy is at least 1 metric ton, or 1,000 kg, under what either the Delta IV Heavy or Atlas V can deliver to the same point in space.
The Falcon 9 Heavy is, much like United Launch Alliance’s Delta IV Heavy, a triple-bodied version of the company’s Falcon 9 launch vehicle. Photo Credit: SpaceX
The Falcon 9 Heavy’s GTO payload deficiency relative to the existing EELV launch vehicles has other down-stream effects as to its appropriateness for beyond-Earth orbit (BEO) crewed exploration. It is safe to assume that the Falcon Heavy’s low-lunar orbit (LLO) payload capacity will not top much above 10 mt [3]. How will the Falcon 9 Heavy’s meager LLO payload capacity enable a meaningful return to the Moon? And why even talk about the Falcon Heavy as a possible launcher of crewed lunar exploration when each of the Delta IV Heavy and Atlas V launchers can send over 1,000 kg more than the Falcon Heavy to the Moon? Moreover, while the Delta IV and Atlas V have extensive flight histories, the Falcon Heavy has no such experience.
Advocates of using the Falcon Heavy don’t just want to rewrite who takes us beyond-Earth orbit, but more fundamentally how such missions are built. Reliance upon the Falcon Heavy for launching a beyond-Earth exploration program means some hard choices as to mission architecture. Traditionally, crewed exploration beyond low-Earth orbit has focused on minimizing complexity, and therefore risk and cost, by using a heavy-lift rocket (HLV). The logic behind using an HLV for lunar exploration in the past was that fewer launches correlated to less risk. The Falcon Heavy’s 10 mt capability means that any lunar exploration program will have to be one of assembling pieces/parts in low-Earth orbit, where the Falcon Heavy’s (LEO) 53 mt payload capacity can really shine. Some have claimed that centering a beyond-Earth exploration program on the Falcon Heavy does not mean ending the Orion spacecraft program. They point this out because Orion is the only spacecraft designed from the ground up for beyond-Earth exploration. Certainly, a Falcon Heavy can place an Orion crewed and service module in low-Earth orbit. But several additional launches will be needed to send Orion and her crew to the Moon. A lunar crewed mission using the Falcon Heavy would mean assembling, at necessary LEO locations, a crewed vehicle, a lander, a trans-lunar injection stage, a stage to get the crewed spacecraft and lander into LLO, and possibly a separate stage to enable the crewed spacecraft to return to Earth [4].
While supporters of an all-commercial approach frequently tout the company’s laudable accomplishments, they just as frequently ignore the limitations of both the Falcon Heavy launch vehicle and the Dragon spacecraft. Photo Credit: SpaceX
One problem with a non-HLV approach to lunar exploration is that if a replacement Falcon Heavy and payload are not handy, any launch failure could very well mean a scrubbed mission. So a non-HLV approach necessarily means an inventory of not just a spare Falcon Heavy, but of duplicate spaceflight hardware—or designing hardware and refueling stations such that a delay of weeks or months would have only a marginal impact on the mission. Solving all of these unknown-unknowns (or unk-unks in engineering speak) associated with multiple launches, assembling a mission in LEO, in-space refueling at an orbiting location, among others flowing from a non-HLV approach to beyond-Earth exploration, could see the cost advantage of using the relatively unproven Falcon Heavy largely, if not completely, evaporate.
A beyond-Earth exploration program using the Falcon Heavy in an HLV architecture has its own downsides and associated costs. In order to enable the Falcon 9 Heavy to be a capable beyond low-Earth orbit launcher, funds will certainly be needed to create a new cryogenic second-stage. This will be needed because, in its current configuration, a Falcon 9 Heavy could not even launch one 11.6 mt Unity node module, much less a 20 mt Bigelow BA 330 Nautilus module. Even with a brand new second-stage, reliance upon the Falcon 9 Heavy to build, visit, and maintain a lunar orbiting outpost will dictate doing so in very small chunks; the number of launches will then begin to add-up, as will the complexity, risk, and cost. A Falcon Heavy cannot place an Orion spacecraft even in high-Earth, much less lunar, orbit. So reliance upon the Falcon 9 Heavy for beyond low-Earth missions in an HLV-based lunar mission architecture would only set NASA up to cancel Orion and go with Dragon for our nation’s crewed space exploration needs.
While it may be true that the Dragon spacecraft has a heatshield capable of allowing the spacecraft safe reentry into the Earth’s atmosphere, little else of Dragon is crew, much less lunar mission, capable. SpaceX’s Dragon is currently a participant in NASA’s commercial crew and cargo programs. One goal of NASA’s commercial crew program is to enable spacecraft built and operated by commercial space companies to get crews to and from the International Space Station by late 2017. But the requirements for a crewed spacecraft tailored for low-Earth orbit are different than those for beyond-Earth orbit. For one, a LEO capable spacecraft need only be capable of hours of operation, where a lunar spacecraft needs a capability of days. This means that the use of the Falcon Heavy as a means to returning humans to the Moon very likely means funding further enhancements, and verifying those enhancements to the Dragon spacecraft. As with over 90 percent of the funding for Falcon 9 and Dragon, this additional financial burden would fall upon NASA’s, and therefore the U.S. taxpayer’s, shoulders. Even with an enhanced Falcon Heavy launcher and Dragon spacecraft, more than one Falcon Heavy launch would still be needed to support a crewed lunar landing mission. Several Falcon Heavy launches would be needed to build a lunar orbiting outpost.
NASA’s SLS has the full support, to include funding, of Congress. As such, efforts to cancel the system in lieu of one that favors the company that SpaceX supporters approve of is not likely to occur. Image Credit: NASA
Or NASA could send a crewed lunar mission or build a lunar outpost with far fewer SLS launches. That’s because the very first iteration of the SLS, the Block I, will carry twice the payload of a Falcon Heavy to the Moon. The SLS Block II will have a lunar payload capacity nearly 3–4 times that of the Falcon Heavy, depending upon what engines are selected for the SLS’s advanced booster.
Beyond the SLS’s substantial payload advantage for lunar missions, the question of cost remains. Are 3 or 4 Falcon Heavy launches really cheaper than just one SLS Block II launch? That is a hard question to answer given that both launchers are still effectively “paper” rockets. In factoring launch costs, there is the cost of the launch vehicle, the launch pad, launch support, and post-launch management, just to name a few.
The bigger problem for those wishing to end the Space Launch System program is that it is currently ahead of schedule. According to John Elbon, Boeing VP & General Manager, Space Exploration, “We’re on budget, ahead of schedule. There’s incredible progress going on with that rocket” [5]. Canceling a rocket that is ahead of schedule would be difficult at best. Given that Congress has, over three votes, not only supported SLS but increased its funding over amounts sought by the Obama Administration, the odds of opponents getting SLS canceled are slim-to-none.
Space Launch System opponents suggest that the SLS program should cancel until a mission requiring such a rocket is identified. John Shannon, also with Boeing, recently stated, “This ‘SLS doesn’t have a mission’ is a smokescreen that’s been put out there by people who would like to see that [program’s] budget go to their own pet projects. SLS is every mission beyond low Earth orbit. The fact that NASA has not picked one single mission is kind of irrelevant” [6]. It bears mentioning that a good part of the reason there is no meaningful mission for the Orion-SLS is because the Obama Administration has not agreed with Congress that, as Congress noted in its 2010 NASA Authorization Act, cislunar space is the next step in our efforts beyond Earth and that the SLS is an integral part of that step.
Moreover, both short- and long-term missions for SLS have emerged in recent months. Within the 2014 FY Budget Proposal Request, NASA was directed to retrieve an asteroid, place it in lunar orbit, and then send astronauts to study it. The vehicle of choice is SLS. During a recent interview, NASA Deputy Associate Administrator for Exploration Systems in the Human Exploration and Operations Mission Directorate Dan Dumbacher stated on AmericaSpace that the long-term mission for SLS was to send astronauts to Mars.
Mr. Jillhouse sings the acolades of the Space Launch System as others sing them about SpaceX’s Falcon9 rockets. What he fails to mention is the SLS’s massive program slippages and muti-billion dollar cost overruns, versus commercial’s million dollar overruns and schedule slippages. It’s not even in the same ballgame, let alone ballpark.
Also the point should be that NASA should’ve bid the SLS job out in order to save the taxpayers money, but the function of SLS isn’t primarily for beyond Earth orbit exploration.
It’s to provide jobs in states that have NASA centers. And that’s why these projects are perpetually underfunded, just enough money is sent in order to keep people employed as long as the politicians can make it possible.
Maybe in the end the SLS will get finished and work as advertised. If I live long enough.
Orbital Sciences Launches It’s Antares Rocket
From spaceref.biz:
Orbital Sciences Corporation Sunday launched its Antares rocket at 05:00 p.m. EDT from the new Mid-Atlantic Regional Spaceport Pad-0A at the agency’s Wallops Flight Facility in Virginia.
The test flight was the first launch from the pad at Wallops and was the first flight of Antares, which delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth’s orbit.
“Today’s successful test marks another significant milestone in NASA’s plan to rely on American companies to launch supplies and astronauts to the International Space Station, bringing this important work back to the United States where it belongs,” said NASA Administrator Charles Bolden. “Congratulations to Orbital Sciences and the NASA team that worked alongside them for the picture-perfect launch of the Antares rocket. In addition to providing further evidence that our strategic space exploration plan is moving forward, this test also inaugurates America’s newest spaceport capable of launching to the space station, opening up additional opportunities for commercial and government users.
“President Obama has presented a budget for next year that ensures the United States will remain the world leader in space exploration, and a critical part of this budget is the funding needed to advance NASA’s commercial space initiative. In order to stop outsourcing American space launches, we need to have the President’s budget enacted. It’s a budget that’s good for our economy, good for the U.S. Space program — and good for American taxpayers.”
The test of the Antares launch system began with the rocket’s rollout and placement on the launch pad April 6, and culminated with the separation of the mass simulator payload from the rocket.
The completed flight paves the way for a demonstration mission by Orbital to resupply the space station later this year. Antares will launch experiments and supplies to the orbiting laboratory carried aboard the company’s new Cygnus cargo spacecraft through NASA’s Commercial Resupply Services (CRS) contract.
“Today’s successful test flight of Orbital Sciences’ Antares rocket from the spaceport at Wallops Island, Virginia, demonstrates an additional private space-launch capability for the United States and lays the groundwork for the first Antares cargo mission to the International Space Station later this year,” said John Holdren, director of the Office of Science and Technology Policy. “The growing potential of America’s commercial space industry and NASA’s use of public-private partnerships are central to President Obama’s strategy to ensure U.S. leadership in space exploration while pushing the bounds of scientific discovery and innovation in the 21st century. With NASA focusing on the challenging and exciting task of sending humans deeper into space than ever before, private companies will be crucial in taking the baton for American cargo and crew launches into low-Earth orbit.
“I congratulate Orbital Sciences and the NASA teams at Wallops, and look forward to more groundbreaking missions in the months and years ahead.”
Orbital is building and testing its Antares rocket and Cygnus spacecraft under NASA’s Commercial Orbital Transportation Services (COTS) program. After successful completion of a COTS demonstration mission to the station, Orbital will begin conducting eight planned cargo resupply flights to the orbiting laboratory through NASA’s $1.9 billion CRS contract with the company.
NASA initiatives, such as COTS, are helping to develop a robust U.S. commercial space transportation industry with the goal of achieving safe, reliable and cost-effective transportation to and from the International Space Station and low-Earth orbit. NASA’s Commercial Crew Program also is working with commercial space partners to develop capabilities to launch U.S. astronauts from American soil in the next few years.
http://www.youtube.com/watch?feature=player_embedded&v=V3L7crGudVU
Although Orbital had to reschedule three times, they got their test launch off.
Let’s hope they solved their fairing separation issues before the main Cygnus missions start.
NASA, U.S. Government and the Asteroid
From Space.com:
NASA’s bold plan to drag an asteroid into orbit around the moon may sound like science fiction, but it’s achievable with current technology, experts
say.
President Barack Obama’s 2014 federal budget request, which will be unveiled today (April 10), likely includes about $100 million for NASA to jump-start an asteroid-capture mission, U.S. Senator Bill Nelson (D-FL) said last week.
The plan aims to place a roughly 23-foot-wide (7 meters) space rock into a stable lunar orbit, where astronauts could begin visiting it as soon as 2021 using NASA’s Space Launch System rocket and Orion capsule, Nelson said.
While challenging, the mission is definitely doable, said Chris Lewicki, president and chief engineer of billionaire-backed asteroid-mining firm Planetary Resources. [NASA’s Asteroid-Capture Plan (Video)]
“Return of a near-Earth asteroid of this size would require today’s largest launch vehicles and today’s most efficient propulsion systems in order to achieve the mission,” Lewicki, who served as flight director for NASA’s Spirit and Opportunity Mars rovers and surface mission manager for the agency’s Phoenix Mars lander, wrote in a blog post Sunday (April 7).
“Even so, capturing and transporting a small asteroid should be a fairly straightforward affair,” Lewicki added. “Mission cost
and complexity are likely on par with missions like the [$2.5 billion] Curiosity Mars rover.”
Spurring solar system exploration
NASA’s idea is similar to one proposed last year by scientists based at Caltech’s Keck Institute for Space Studies in Pasadena.
The Keck study estimated that a robotic spacecraft could drag a 23-foot near-Earth asteroid (NEA) — which would likely weigh about 500 tons — into a high lunar orbit for $2.6 billion. The returns on this initial investment are potentially huge, the researchers said.
“Experience gained via human expeditions to the small returned NEA would transfer directly to follow-on international expeditions beyond the Earth-moon system: to other near-Earth asteroids, [the Mars moons] Phobos and Deimos, Mars and potentially someday to the main asteroid belt,” the Keck team wrote in a feasibility study of their plan.
The mission would also help develop asteroid-mining technology, advocates say, and advance scientists’ understanding of how our solar system took shape more than 4.5 billion years ago.
Asteroids “probably represent samples of the earliest matter that was made available to form our solar system and our Earth,” Caltech’s Paul Dimotakis, a member of the Keck study team, told SPACE.com in February.
“We learned a lot about the moon by analyzing the moon rocks that Apollo astronauts brought back,” he added. [NASA’s 17 Apollo Moon Missions in Pictures]
A challenging mission
Unmanned probes have successfully rendezvoused with asteroids in deep space multiple times. Japan’s Hayabusa craft even snagged pieces of the near-Earth asteroid Itokawa in 2005, sending them back to our planet for study.
But bagging an entire asteroid and dragging it to our neck of the cosmic woods is unprecedented, and it presents several daunting challenges.
For example, the target asteroid will be spinning, which doesn’t make for a smooth ride to lunar orbit. After the spacecraft captures the asteroid and brings it into a hold of sorts, the space rock will have to be de-spun, likely with thrusters, Dimotakis said.
“You might use reaction jets to take out most of it [the spin],” he said. “You would give you yourself a lot of time to do this, because there’s no second chance in any of this.”
Further, bringing the asteroid onboard greatly increases the spacecraft’s mass, making propulsion and navigation much more difficult. And precise navigation will definitely be required to deliver the space rock to its desired orbit, Dimotakis said (though he also stressed that any asteroid chosen would pose no danger to humanity even if it somehow struck our planet).
But ion thrusters like the ones powering NASA’s Dawn mission to the huge asteroid Vesta and dwarf planet Ceres should be muscular enough to make the journey, likely taking a few years to reach the asteroid and somewhat longer to come back. And the asteroid-laden probe could probably still be guided with great care, he added.
“My guess is that all of these are not insurmountable challenges, and you would be able to calibrate yourself after you snagged it and adjust your controls,” Dimotakis said.
Choosing a target
Perhaps the biggest challenge of the entire mission is picking a suitable space rock to retrieve, Lewicki wrote in his blog post.
The Keck study recommends going after a carbonaceous asteroid packed full of water and other volatiles. Carbonaceous asteroids can be very dark, and it’s tough to spot and characterize a 23-foot asteroid in the vast depths of space whatever its color.
So both Lewicki and Dimotakis stressed the importance of searching for potential asteroid targets sooner rather than later. Planetary Resources plans to begin launching a line of small prospecting space telescopes in 2014 or 2015, and these “Arkyd-100” craft could aid NASA’s mission, Lewicki wrote.
Dimotakis, for his part, is engaged in a follow-up to the Keck study that’s looking for potential targets in observations made by current telescopes.
“We are developing software in collaboration with JPL [NASA’s Jet Propulsion Laboratory] that is going to exploit the observational digital record and essentially flag things that could be of interest and might be in this class
,” he said. “This has never happened before.”
Still, mission scientists and engineers shouldn’t just sit on their hands until an asteroid selection is made, he added.
It’s important “to start developing the spacecraft before you even know where you’re going,” Dimotakis said. “If you do these things in parallel, then the mission timeline shrinks.”
The $2.6 Billion price tag looks a little low to me, but the Russians seem to want to get onboard with this idea too.
Unfortunately, the Russian space program is largely financed by NASA payments to launch American and international astronauts to the ISS. So the cost will still be born by the U.S. taxpayer.
Don’t get me wrong, I still think this is a worthwhile effort, but I think NASA should continue to partner with private industry and the Europeans to help defray the expences.
Skylab II
From Space.com:
NASA’s first manned outpost in deep space may be a repurposed rocket part, just like the agency’s first-ever astronaut abode in Earth orbit.
With a little tinkering, the upper-stage hydrogen propellant tank of NASA’s huge Space Launch System rocket would make a nice and relatively cheap deep-space habitat, some researchers say. They call the proposed craft “Skylab II,” an homage to the 1970s Skylab space station that was a modified third stage of a Saturn V moon rocket.
“This idea is not challenging technology
,” said Brand Griffin, an engineer with Gray Research, Inc., who works with the Advanced Concepts Office at NASA’s Marshall Space Flight Center in Huntsville, Ala.
“It’s just trying to say, ‘Is this the time to be able to look at existing assets, planned assets and incorporate those into what we have as a destination of getting humans beyond LEO [low-Earth orbit]?'” Griffin said Wednesday (March 27) during a presentation with NASA’s Future In-Space Operations working group.
A roomy home in deep space
NASA is developing the Space Launch System (SLS) to launch astronauts toward distant destinations such as near-Earth asteroids and Mars. The rocket’s first test flight is slated for 2017, and NASA wants it to start lofting crews by 2021.
The SLS will stand 384 feet tall (117 meters) in its biggest (“evolved”) incarnation, which will be capable of blasting 130 metric tons of payload
to orbit. Its upper-stage hydrogen tank is big, too, measuring 36.1 feet tall by 27.6 feet wide (11.15 m by 8.5 m).
The tank’s dimensions yield an internal volume of 17,481 cubic feet (495 cubic m) — roughly equivalent to a two-story house. That’s much roomier than a potential deep-space habitat derived from modules of the International Space Station (ISS), which are just 14.8 feet (4.5 m) wide, Griffin said.
The tank-based Skylab II could accommodate a crew of four comfortably and carry enough gear and food to last for several years at a time without requiring a resupply, he added. Further, it would launch aboard the SLS in a single piece, whereas ISS-derived habitats would need to link up multiple components in space.
Because of this, Skylab II would require relatively few launches to establish and maintain, Griffin said. That and the use of existing SLS-manufacturing infrastructure would translate into big cost savings — a key selling point in today’s tough fiscal climate.
“We will have the facilities in place, the tooling, the personnel, all the supply chain and everything else,” Griffin said.
He compared the overall concept with the original Skylab space station, which was built in a time of declining NASA budgets after the boom years of the Apollo program.
Skylab “was a project embedded under the Apollo program,” Griffin said. “In many ways, this could follow that same pattern. It could be a project embedded under SLS and be able to, ideally, not incur some of the costs of program startup.”
There has been much caterwauling in the space advocacy community about the Space Launch System ( ne, “The Senate Launch System” ) concerning its cost and lack of purpose and/or destinations.
Of course, the thing was designed by Congress in order to fund a jobs program in the NASA Centers for the good voters of those districts. But it’s a seriously underfunded program, with just enough money to keep the civil servants of NASA employed, with just enough contractor support to keep them happy.
In the meantime, ideas like Skylab II, the Spacehab at EML-2 and the asteroid capture scheme rear their ugly heads and claim they’re economical in these austeric times.
My money is still on Elon Musk, Bob Bigelow, Dennis Tito and company.
Did Voyager 1 Leave The Solar System?
From nytimes.com:
For about three hours on Wednesday, Voyager 1 had left the solar system — before a rewritten news release headline pulled it back in. Voyager 1, one of two spacecraft NASA launched in 1977 on a grand tour of the outer planets, is now nearly 11.5 billion miles from the Sun, speeding away at 38,000 miles per hour. In a paper accepted by the journal Geophysical Review Letters, William R. Webber of New Mexico State University and Frank B. McDonald of the University of Maryland reported that on Aug. 25 last year, the spacecraft observed a sudden change in the mix of cosmic rays hitting it.
Cosmic rays are high-speed charged particles, mostly protons. Voyager 1’s instruments recorded nearly a doubling of cosmic rays from outside the solar system, while the intensity of cosmic rays that had been trapped in the outer solar system dropped by 90 percent.
The American Geophysical Union, publisher of the journal, sent out the news Wednesday morning: “Voyager 1 has left the solar system.” NASA officials, surprised, countered with a contrary statement from Edward C. Stone, the Voyager project scientist. “It is the consensus of the Voyager science team that Voyager 1 has not yet left the solar system or reached interstellar space,” Dr. Stone said. He said that the critical indicator would be a change in the direction of the magnetic field, not cosmic rays, for marking the outermost boundary of the solar system. In their paper, Dr. Webber and Dr. McDonald (who died only six days after Voyager observed the shift in cosmic rays) did not claim that Voyager 1 was in interstellar space, but had entered a part of the solar system they called the “heliocliff.” The geophysical union then sent out another e-mail with the same article but a milder headline: “Voyager 1 has entered a new region of space.”
Eventually Voyager 1 will leave the Solar System and there will be no dispute about it.
In the meantime, mainstream science will learn and post about the outer edges of the Solar System as Voyager 1 creeps along at .00002 lightspeed ( 37,500 mph ) .
Of course there are those in mainstream media and science who believe that mankind will never leave the Solar System because they proclaim that spacecraft will never be built that go faster than that.
Already the Pluto probe New Horizon traveling at 54,500 mph is breaking Voyager’s speed record and will probably leave the Solar System before Voyager does!
I’m certain in 100 years star probes will be launched toward Alpha Centauri and Tau Ceti that reach appreciable percentages of lightspeed bypassing all of our old interplanetary probes and perhaps in several centuries, mankind’s interstellar colonies will be picking up these old probes to study them, like old time capsules!
Where’s Voyager 1? That Depends.
Hat tip to the Daily Grail.
To Ply The Martian Way
From Centauri Dreams:
Existential risks, as discussed here yesterday, seem to be all around us, from the dangers of large impactors to technologies running out of control and super-volcanoes that can cripple our civilization. We humans tend to defer thinking on large-scale risks while tightly focusing on personal risk. Even the recent events near Chelyabinsk, while highlighting the potential danger of falling objects, also produced a lot of fatalistic commentary, on the lines of ‘if it’s going to happen, there’s nothing we can do about it.’ Some media outlets did better than others with this.
Risk to individuals is understandably more vivid. When Apollo 8 left Earth orbit for the Moon in 1968, the sense of danger was palpable. After all, these astronauts were leaving an orbital regime that we were beginning to understand and were, by the hour, widening the distance between themselves and our planet. But even Apollo 8 operated within a sequenced framework of events. Through Mercury to Gemini and Apollo, we were building technologies one step at a time that all led to a common goal. No one denied the dangers faced by every crew that eventually went to the Moon, but technologies were being tested and refined as the missions continued.
Inspiration Mars is proposing something that on balance feels different. As described in yesterday’s news conference (see Millionaire plans to send couple to Mars in 2018. Is that realistic? for more), the mission would be a flyby, using a free return trajectory rather than braking into Martian orbit. The trip would last 501 days and would be undertaken by a man and a woman, probably a middle-aged married couple. Jonathan Clark, formerly of NASA and now chief medical officer for Inspiration Mars, addresses the question of risk head-on: “The real issue here is understanding the risk in an informed capacity – the crew would understand that, the team supporting them would understand that.” Multi-millionaire Dennis Tito, a one-time space tourist who heads up Inspiration Mars, says the mission will launch in 2018.
Image: A manned Mars flyby may just be doable. But is the 2018 date pushing us too hard? Image credit: NASA/JPL.
We’ll hear still more about all this when the results of a mission-feasibility study are presented next weekend at the 2013 IEEE Aerospace Conference in Montana. Given the questions raised by pushing a schedule this tightly, there will be much to consider. Do we have time to create a reliable spacecraft that can offer not only 600 cubic feet of living space but another 600 for cargo, presumably a SpaceX Dragon capsule mated to a Bigelow inflatable module? Are we ready to expose a crew to interplanetary radiation hazards without further experience with the needed shielding strategies? And what of the heat shield and its ability to protect the crew during high-speed re-entry at velocities in the range of 50,000 kilometers per hour?
For that matter, what about Falcon Heavy, the launch vehicle discussed in the feasibility analysis Inspiration Mars has produced for the conference? This is a rocket that has yet to fly.
No, this doesn’t feel much like Apollo 8. It really feels closer to the early days of aviation, when attention converged on crossing the Atlantic non-stop and pilots like Rene Fonck, Richard Byrd, Charles Nungesser and Charles Lindbergh queued up for the attempt. As with Inspiration Mars, these were privately funded attempts, in this case designed to win the Orteig Prize ($25,000), though for the pilots involved it was the accomplishment more than the paycheck that mattered. Given the problems of engine reliability at the time, it took a breakthrough technology — the Wright J-5C Whirlwind engine — to get Lindbergh and subsequent flights across.
Inspiration Mars is looking to sell media rights and sponsorships as part of the fund-raising package for the upcoming mission, which is already being heavily backed by Tito. I’m wondering if there is a breakthrough technology equivalent to the J-5C to help this mission along, because everything I read about it makes it appear suicidal. The 2018 date is forced by a favorable alignment between Mars and the Earth that will not recur until 2031, so the haste is understandable. The idea is just the kind of daring, improbable stunt that fires the imagination and forces sudden changes in perspective, and of course I wish it well. But count me a serious skeptic on the question of whether this mission will be ready to fly on the appointed date.
And if it’s not? I like the realism in the concluding remarks of the feasibility study:
A manned Mars free-return mission is a useful precursor mission to other planned Mars missions. It will develop and demonstrate many critical technologies and capabilities needed for manned Mars orbit and landing missions. The technology and other capabilities needed for this mission are needed for any future manned Mars missions. Investments in pursuing this development now would not be wasted even if this mission were to miss its launch date.
Exactly so, and there would be much development in the interim. The study goes on:
Although the next opportunity after this mission wouldn’t be for about another 13 years, any subsequent manned Mars mission would benefit from the ECLSS [Environmental Control and Life Support System], TPS [Thermal Protection System], and other preparation done for this mission. In fact, often by developing technology early lessons are learned that can reduce overall program costs. Working on this mission will also be a means to train the skilled workforce needed for the future manned Mars missions.
These are all good reasons for proceeding, leaving the 2018 date as a high-risk, long-shot option. While Inspiration Mars talks to potential partners in the aerospace industry and moves ahead with an eye on adapting near-Earth technologies for the mission, a whiff of the old space race is in the air. “If we don’t fly in 2018, the next low-hanging fruit is in ’31. We’d better have our crew trained to recognize other flags,” Tito is saying. “They’re going to be out there.”
In 1968, faced with a deadline within the decade, NASA had to make a decision on risk that was monumental — Dennis Tito reminded us at the news conference that Apollo 8 came only a year after the first test launch of the Saturn 5. Can 2018 become as tangible a deadline as 1970 was for a nation obsessed with a Moon landing before that year? If so, the technologies just might be ready, and someone is going to have to make a white-knuckle decision about the lives of two astronauts. If Inspiration Mars can get us to that point, that decision won’t come easy, but whoever makes it may want to keep the words of Seneca in mind: “It is not because things are difficult that we dare not venture. It is because we dare not venture that they are difficult.”
There are a lot of nay-sayers out yonder decrying Tito’s idea as suicidal and a waste of money. But as recently as a couple of months ago questionnaires were sent out asking for volunteers to sign up for a one way trip to Mars (Mars One), even if there’s a better than even chance of dying at any moment of it.
The results were astounding.
Tito’s idea of sending an older married couple is nothing short of public opinion genius and if successful, could be the format of any future Mars colonization efforts.
Not to mention the technologies needed for the crossing.
The Eerie Silence and Machine Intelligences
From The Daily Galaxy:
The species that you and all other living human beings on this planet belong to is Homo sapiens. During a time of dramatic climate change 200,000 years ago,Homo sapiens (modern humans) evolved in Africa. Is the human species entering another evolutionary inflection point?
Paul Davies, a British-born theoretical physicist, cosmologist, astrobiologist and Director of the Beyond Center for Fundamental Concepts in Science and Co-Director of the Cosmology Initiative at Arizona State University, says in his new book The Eerie Silence that any aliens exploring the universe will be AI-empowered machines. Not only are machines better able to endure extended exposure to the conditions of space, but they have the potential to develop intelligence far beyond the capacity of the human brain.”I think it very likely – in fact inevitable – that biological intelligence is only a transitory phenomenon, a fleeting phase in the evolution of the universe,” Davies writes. “If we ever encounter extraterrestrial intelligence, I believe it is overwhelmingly likely to be post-biological in nature.”
Before the year 2020, scientists are expected to launch intelligent space robots that will venture out to explore the universe for us.
“Robotic exploration probably will always be the trail blazer for human exploration of far space,” says Wolfgang Fink, physicist and researcher at Caltech. “We haven’t yet landed a human being on Mars but we have a robot there now. In that sense, it’s much easier to send a robotic explorer. When you can take the human out of the loop, that is becoming very exciting.”
As the growing global population continues to increase the burden on the Earth’s natural resources, senior curator at the Smithsonian National Air and Space Museum, Roger Launius, thinks that we’ll have to alter human biology to prepare to colonize space.
In the September issue of Endeavour, Launius takes a look at the historical debate surrounding human colonization of the solar system. Experiments have shown that certain life forms can survive in space. Recently, British scientists found that bacteria living on rocks taken from Britain’s Beer village were able to survive 553 days in space, on the exterior of the International Space Station (ISS). The microbes returned to Earth alive, proving they could withstand the harsh environment.
Humans, on the other hand, are unable to survive beyond about a minute and a half in space without significant technological assistance. Other than some quick trips to the moon and the ISS, astronauts haven’t spent too much time too far away from Earth. Scientists don’t know enough yet about the dangers of long-distance space travel on human biological systems. A one-way trip to Mars, for example, would take approximately six months. That means astronauts will be in deep space for more than a year with potentially life-threatening consequences.
Launius, who calls himself a cyborg for using medical equipment to enhance his own life, says the difficult question is knowing where to draw the line in transforming human biological systems to adapt to space. Credit: NASA/Brittany Green
“If it’s about exploration, we’re doing that very effectively with robots,” Launius said. “If it’s about humans going somewhere, then I think the only purpose for it is to get off this planet and become a multi-planetary species.”
Stephen Hawking agrees: “I believe that the long-term future of the human race must be in space,” Hawking told the Big Think website in August. “It will be difficult enough to avoid disaster on planet Earth in the next hundred years, let alone the next thousand, or million. The human race shouldn’t have all its eggs in one basket, or on one planet.”
If humans are to colonize other planets, Launius said it could well require the “next state of human evolution” to create a separate human presence where families will live and die on that planet. In other words, it wouldn’t really be Homo sapien sapiens that would be living in the colonies, it could be cyborgs—a living organism with a mixture of organic and electromechanical parts—or in simpler terms, part human, part machine.
“There are cyborgs walking about us,” Launius said. “There are individuals who have been technologically enhanced with things such as pacemakers and cochlea ear implants that allow those people to have fuller lives. I would not be alive without technological advances.”
The possibility of using cyborgs for space travel has been the subject of research for at least half a century. A seminal article published in 1960 by Manfred Clynes and Nathan Kline titled “Cyborgs and Space” changed the debate, saying that there was a better alternative to recreating the Earth’s environment in space, the predominant thinking during that time. The two scientists compared that approach to “a fish taking a small quantity of water along with him to live on land.” They felt that humans should be willing to partially adapt to the environment to which they would be traveling.
“Altering man’s bodily functions to meet the requirements of extraterrestrial environments would be more logical than providing an earthly environment for him in space,” Clynes and Kline wrote.
“It does raise profound ethical, moral and perhaps even religious questions that haven’t been seriously addressed,” Launius said. “We have a ways to go before that happens.”
Some experts such as medical ethicist Grant Gillett believe that the danger is that we might end up producing a psychopath because we don’t quite understand the nature of cyborgs.
NASA, writes Lauris, still isn’t focusing much research on how to improve human biological systems for space exploration. Instead, its Human Research Program is focused on risk reduction: risks of fatigue, inadequate nutrition, health problems and radiation. While financial and ethical concerns may have held back cyborg research, Launius believes that society may have to engage in the cyborg debate again when space programs get closer to launching long-term deep space exploration missions.
“If our objective is to become space-faring people, it’s probably going to force you to reconsider how to reengineer humans,’ Launius said.