Category Archives: interstellar travel

PopSci: Lasers Could Send A Wafer-Thin Spaceship To A Star

Lasers and photon drives have been a staple of science-fiction for 150 years.

Now finally, laser-driven star probes are in the main-stream of science.

Lasers are now advanced enough to help launch interstellar space probes, researchers say.

Scientists calculate that a gram-sized laser-propelled space probe could reach more than 25 percent of the speed of light and arrive at the nearest star in about 20 years.

The Voyager 1 spacecraft launched in 1977 is finally leaving the solar system after 37 years of flight at a speed of roughly 38,000 miles per hour or less than 0.006 percent the speed of light. This suggests that with conventional propulsion technology, humanity will never reach even the nearest stars, says experimental cosmologist Philip Lubin at the University of California, Santa Barbara.

Lubin and his colleagues suggest that, instead, lasers could accelerate small probes to relativistic — that is, near-light — speeds, reaching nearby stars in a human lifetime. “No other current technology offers a realistic path forward to relativistic flight at the moment,” Lubin says.

The problem with all thrusters that current spacecraft use for propulsion is that the propellant they carry with them and use for thrust has mass. Interstellar spacecraft require a lot of propellant, which makes them heavy, which requires more propellant, making them heavier, and so on.

Photon drives instead involve equipping spacecraft with mirrors and depending on distant light sources for propulsion. Solar sails rely on light from the sun, while laser sails count on powerful lasers.

Lubin acknowledges that photon drives are nothing new — in a letter to Galileo Galilei in 1610, Johannes Kepler wrote, “Given ships or sails adapted to the breezes of heaven, there will be those who will not shrink from even that vast expanse.” What is new, Lubin says, is that recent, poorly appreciated breakthroughs in laser technology suggest they can now accelerate spacecraft to relativistic speeds.

Breakthroughs in laser technology suggest they can now accelerate spacecraft to relativistic speeds.

The advance that Lubin’s approach depends on involves laser arrays. Instead of building one extremely powerful laser — a technologically challenging feat — researchers now can build phased arrays that are made of a large number of relatively modest laser amplifiers that can sync up to act like a single powerful laser. This strategy also eliminates the need for a single giant lens, replacing it with a phased array of smaller optics.

The researchers envision a phased array of currently existing kilowatt-scale ytterbium laser amplifiers that can scale up gradually, adding lasers over time. For instance, a current 1- to 3-kilowatt ytterbium laser amplifier is about the size of a textbook and weighs roughly 5 kilograms.

Eventually, the scientists calculate that a 50- to 70-gigawatt array that is 10 kilometers by 10 kilometers large in Earth orbit could propel a gram-sized wafer-like spacecraft with a 1-meter-wide sail to more than 25 percent of the speed of light after about 10 minutes of illumination, which could reach Mars in 30 minutes and Alpha Centauri in about 20 years. The researchers suggest this array could launch roughly 40,000 relativistic wafer-sized probes per year — each “wafersat” would be a complete miniature spacecraft, carrying cameras, communications, power and other systems.

The same array could propel a 100-ton spacecraft — about the mass of a fully loaded space shuttle, sans rockets — with a 8.5-kilometer-wide sail to about 0.2 percent of the speed of light after about 15 years of illumination. However, it would take about 2,200 years to reach Alpha Centauri at those speeds. Lubin suggests a larger array would make more sense for a human interstellar trip in the distant future, “but I personally do not see this as a priority until many robotic probes have established a need to do so.”

A major problem with this strategy is braking — the researchers currently have no way to slow down these laser-driven spacecraft enough for them to enter into orbit around the distant planets that they are dispatched to. The first missions that accelerate to relativistic speeds may have to simply fly by targets and beam back their data via lasers, Lubin notes.

Lubin notes there are many additional uses for such a laser array other than space exploration. For example, it could deflect asteroids away from Earth, or blast debris out of orbit to prevent it from threatening spacecraft, astronauts and satellites.

They are currently testing to show that small lasers can stop asteroids from spinning.

The researchers stress that they are not proposing to immediately build the largest system. They are currently testing small lasers on asteroid-like rock samples to show that such systems can stop asteroids from spinning, work that could help one day wrangle asteroids for exploration.

If lasers are the only practical route for interstellar travel, Lubin and his colleagues suggest that alien civilization may currently use lasers to help explore the cosmos. They suggest that SETI projects should look for telltale signs of such technology.

Lubin presented his latest work in a talk on January 25 at Harvard.

Lubin however fails to mention how the Military-Industrial-Complex invested billions and billions of dollars to make lasers into a combat grade weapon, which lasers of this type obviously are.

Which begs the question of “Will the government allow space probes of this type to be used?”

And who or whom would be allowed to construct them?

Original article

Interstellar Flybys

From another great post on Centauri Dreams:

The star HIP 85605 until recently seemed more interesting than it may now turn out to be. In a recent paper, Coryn Bailer-Jones (Max Planck Institute for Astronomy, Heidelberg) noted that the star in the constellation Hercules had a high probability of coming close enough to our Solar System in the far future (240,000 to 470,000 years from now) that it would pass through the Oort Cloud, potentially disrupting comets there. The possibility of a pass as close as .13 light years (8200 AU) was there, but Bailer-Jones cautioned that distance measurements of this star could be incorrect. His paper on nearby stellar passes thus leaves the HIP 85605 issue unresolved.

Enter Eric Mamajek (University of Rochester) and company. Working with data from the Southern African Large Telescope (SALT) and the Magellan telescope at Las Campanas Observatory in Chile, Mamajek showed that the distance to HIP 85605 has been underestimated by a factor of ten. As Bailer-Jones seems to have suspected, the new measurement takes the star on a trajectory that does not bring it within the Oort Cloud. But in the same paper, the team names an interesting system called Scholz’s Star as a candidate for a close pass in the past.

Studying the star’s tangential velocity (motion across the sky) as well as radial velocity data, the team found that despite being relatively close at 20 light years, Scholz’s Star shows little tangential velocity. That would imply an interesting encounter ahead, or one that had already happened. Mamajek explains:

“Most stars this nearby show much larger tangential motion. The small tangential motion and proximity initially indicated that the star was most likely either moving towards a future close encounter with the solar system, or it had ‘recently’ come close to the solar system and was moving away. Sure enough, the radial velocity measurements were consistent with it running away from the Sun’s vicinity – and we realized it must have had a close flyby in the past.”

Red and Brown dwarf binary system

Image: Artist’s conception of Scholz’s star and its brown dwarf companion (foreground) during its flyby of the solar system 70,000 years ago. The Sun (left, background) would have appeared as a brilliant star. The pair is now about 20 light years away. Credit: Michael Osadciw/University of Rochester.

The paper on this work, recently published in the Astrophysical Journal, determines the star’s trajectory, one that shows that about 70,000 years ago, it would have passed some 52,000 AU from the Sun. This works out to about 0.82 light years, or 7.8 trillion kilometers, quite a bit closer than Proxima Centauri, and probably close enough to pass through the outer Oort Cloud. The star was within 100,000 AU of the Sun for a period of roughly 10,000 years.

Scholz’s star (W0720) is a low-mass object in the constellation Monoceros also tagged WISE J072003.20-084651.2 and only recently discovered (by Ralf-Dieter Scholz in 2014) thanks to its dimness in optical wavelengths, its proximity to the galactic plane and its low proper motion. Adaptive optics imaging and high resolution spectroscopy has demonstrated that the star is actually a binary, an M-dwarf with a companion at 0.8 AU that is probably a brown dwarf.

The question that immediately comes to mind is what kind of object the Scholz’s star system would have presented in the night sky some 70,000 years ago. The answer is not dramatic, for at its closest approach the binary would have had an apparent magnitude in the range of 11.4 (note: there is a typo in the paper, as noted here, which had specified an apparent magnitude of 10.3). This is five magnitudes, or a factor of 100 times, fainter than the faintest naked eye stars. But the paper notes that M-dwarfs like this one are often given to flare activity that might have made Scholz’s star a brighter object. From the paper:

If W0720 experienced occasional flares similar to those of the active M8 star SDSS J022116.84+194020.4 (Schmidt et al. 2014), then the star may have been rarely visible with the naked eye from Earth (V < 6; ∆V < −4) for minutes or hours during the flare events. Hence, while the binary system was too dim to see with the naked eye in its quiescent state during its flyby of the solar system ∼70 kya, flares by the M9.5 primary may have provided visible short-lived transients visible to our ancestors.

And take a look at this graph, which Eric Mamajek published on Twitter yesterday.

Mamajek_graph

As you can see, Scholz’s Star was moving out. If it had been visible, what would ancient skywatchers have made of it? We also have to wonder what other close encounters our Solar System may have had with other stars. Note this point from the paper about M-dwarfs:

Past systematic searches for stars with close flybys to the solar system have been understandably focused on the Hipparcos astrometric catalog (García Sánchez et al. 1999; Bailer-Jones 2014), however it contains relatively few M dwarfs relative to their cosmic abundance. Searches in the Gaia astrometric catalog for nearby M dwarfs with small proper motions and large parallaxes (i.e. with small tangential velocities) will likely yield addition candidates.

So much still to learn about M-dwarfs!

Original post.

Project Dragonfly Lives!

Here is another great post from Centauri Dreams, written by Andreas Hein. Good stuff.

2089, 5th April: A blurry image rushes over screens around the world. The image of a coastline, waves crashing into it, inviting for a nice evening walk at dawn. Nobody would have paid special attention, if it were not for one curious feature: Two suns were mounted in the sky, two bright, hellish eyes. The first man-made object had reached another star system.

Is it plausible to assume that we could send a probe to another star within our century? One major challenge is the amount of resources needed for such a mission. [1, 2]. Ships proposed in the past were mostly mammoths, weighing ten-thousands of tons: the fusion-propelled Daedalus probe with 54,000 tonnes and recently the Project Icarus Ghost Ship with over 100,000 tonnes. All these concepts are based on the rocket principle, which means that they have to take their propellant with them to accelerate. This results in a very large ship.

Another problem with fusion propulsion in particular is the problem of scalability. Most fusion propulsion systems get more efficient when they are scaled up. There is also a critical lower threshold for how small you can go. These factors lead to large amounts of needed propellant and large engines, for which you need a large space infrastructure. A Solar System-wide economy is probably needed, as the Project Daedalus report argues [3].

Icarus Ghost Ship

Image: The Project Icarus Ghost Ship: A colossal fusion-propelled interstellar probe
http://www.spaceanswers.com/futuretech/ghost-ship-to-alpha-centauri/

However, there is a different avenue for interstellar travel: going small. If you go small, you need less energy for accelerating the probe and thus less resources. Pioneers of small interstellar missions are Freeman Dyson with his Astrochicken; a living, one kilogram probe, bio-engineered for the space environment [4]. Robert Forward proposed the Starwisp probe in 1985 [5]. A large, ultra-thin sail which rides on a beam of microwaves. Furthermore, Frank Tipler and Ray Kurzweil describe how nano-scale probes could be used for transporting human consciousness to the stars [6, 7].

At the Initiative for Interstellar Studies (I4IS), we wanted to have a fresh look at small interstellar probes, laser sail probes in particular. The last concepts in this area have been developed years ago. How did the situation change in recent years? Are there new, possibly disruptive concepts on the horizon? We think there are. The basic idea is to develop an interstellar mission by combining the following technologies:

  • Laser sail propulsion: The spacecraft rides on a laser beam, which is captured by an extremely thin sail [8].
  • Small spacecraft technology: Highly miniaturized spacecraft components which are used in CubeSat missions
  • Distributed spacecraft: To spread out the payload of a larger spacecraft over several spacecraft, thus, reducing the laser power requirements [9, 10]. The individual spacecraft would then rendezvous at the target star system and collaborate to fulfill their mission objectives. For example, one probe is mainly responsible for communication with the Solar System, another responsible for planetary exploration via distributed sensor networks (smart dust) [11].
  • Magnetic sails: A thin superconducting ring’s magnetic field deflects the hydrogen in the interstellar medium and decelerates the spacecraft [12].
  • Solar power satellites: The laser system shall use space infrastructure which is likely to exist in the next 50 years. Solar power satellites would be temporarily leased to provide the laser system with power to propel the spacecraft.
  • Communication systems with external power supply: A critical factor for small interstellar missions is power supply for the communication system. As small spacecraft cannot provide enough power for communicating over these vast distances. Thus, power has to be supplied externally, either by using laser or microwave power from the Solar System during the trip and solar radiation within the target star system [5].

Size Comparison

Image: Size comparison between an interplanetary solar sail and the Project Icarus Ghost Ship. Interstellar sail-based spacecraft would be much larger. (Courtesy: Adrian Mann and Kelvin Long)

Bringing all these technologies together, it is possible to imagine a mission which could be realized with technologies which are feasible in the next 10 years and could be in place in the next 50 years: A set of solar power satellites are leased for a couple of years for the mission. A laser system with a huge aperture has been put into a suitable orbit to propel the interstellar, as well as future planetary missions. Thus, the infrastructure can be reused for multiple purposes. The interstellar probes are launched one-by-one.

After decades, the probes start to decelerate by magnetic sails. Each spacecraft charges its sails differently. The first spacecraft decelerates slower than the follow-up probes. Ideally, the spacecraft then arrive at the target star system at the same point in time. Then, the probes start exploring the star system autonomously. They reason about exploration strategies, exchange and share data. Once a suitable exploration target has been chosen, dedicated probes descend to the planetary surface, spreading dust-sized sensor networks onto the pristine land. The data from the network is collected by other spacecraft and transferred back to the spacecraft acting as a communication hub. The hub, powered by the light from extrasolar light sends back the data to us. The result could be the scenario described at the beginning of this article.

Artistic impression

Image: Artist’s impression of a laser sail probe with a chip-sized payload. (Courtesy: Adrian Mann)

Of course, one of the caveats of such a mission is its complexity. The spacecraft would have to rendezvous precisely over interstellar distances. Furthermore, there are several challenges with laser sail systems, which have been frequently addressed in the literature, for example beam collimation and control. Nevertheless, such a mission architecture has many advantages compared to existing ones: It could be realized by a space infrastructure we could imagine to exist in the next 50 years. The failure of one or more spacecraft would not be catastrophic, as redundancy could easily be built in by launching two or more identical spacecraft.

The elegance of this mission architecture is that all the infrastructure elements can also be used for other purposes. For example, a laser infrastructure could not only be used for an interstellar mission but interplanetary as well. Further applications include an asteroid defense system [20]. The solar power satellites can be used for providing in-space infrastructure with power [18].

spacecraft swarm

Image: Artist’s impression of a spacecraft swarm arriving at an exosolar system (Courtesy: Adrian Mann)

How about the feasibility of the individual technologies? Recent progress in various areas looks promising:

  • The increased availability of highly sophisticated miniaturized commercial components: smart phones include many components which are needed for a space system, e.g. gyros for attitude determination, a communication system, and a microchip for data-handling. NASA has already flown a couple of “phone-sats”; Satellites which are based on a smart phone [13].
  • Advances in distributed satellite networks: Although a single small satellite only has a limited capability, several satellites which cooperate can replace larger space systems. The concept of Federated Satellite Systems (FSS) is currently explored at the Massachusetts Institute of Technology as well as at the Skolkovo Institute of Technology in Russia [14]. Satellites communicate opportunistically and share data and computing capacity. It is basically a cloud computing environment in space.
  • Increased viability of solar sail missions. A number of recent missions are based on solar sail technology, e.g. the Japanese IKAROS probe, LightSail-1 of the Planetary Society, and NASA’s Sunjammer probe.
  • Greg Matloff recently proposed use of Graphene as a material for solar sails [15]. With an areal density of a fraction of a gram and high thermal resistance, this material would be truly disruptive. Currently existing materials have a much higher areal density; a number crucial for measuring the performance of solar sails.
  • Material sciences has also advanced to a degree where Graphene layers only a few atoms thick can be manufactured [16]. Thus, manufacturing a solar sail based on extremely thin layers of Graphene is not as far away as it seems.
  • Small satellites with a mass of only a few kilograms are increasingly proposed for interplanetary missions. NASA has recently announced the Interplanetary CubeSat Challenge, where teams are invited to develop CubeSat missions to the Moon and even deeper into space (NASA) [17]. Coming advances will thus stretch the capability of CubeSats beyond Low-Earth Orbit.
  • Recent proposals for solar power satellites focus on providing space infrastructure with power instead of Earth infrastructure [18, 19]. The reason is quite simple: Solar power satellites are not competitive to most Earth-based alternatives but they are in space. A recent NASA concept by John Mankins proposed the use of a highly modular tulip-shaped space power satellite, supplying geostationary communication satellites with power.
  • Large space laser systems have been proposed for asteroid defense [20]

In order to explore various mission architectures and encourage participation by a larger group of people, I4IS has recently announced the Project Dragonfly Competition in the context of the Alpha Centauri Prize [21]. We hope that with the help of this competition, we can find unprecedented mission architectures of truly disruptive capability. Once this goal is accomplished, we can concentrate our efforts on developing individual technologies and test them in near-term missions.

If this all works out, this might be the first time in history that there is a realistic possibility to explore a near-by star system within the 21st or early 22nd century with “modest” resources.

I remember when the original Project Icarus study came out in the 1970s and I was absolutely enthralled with it.

At last, interstellar exploration could be possible, not fantasy.

Then the Icarus came out a couple of years ago. The ship was more advanced, but the size doubled. How is that possible in this age of miniaturization?

I think it’s because people love the idea of Battlestar Galactica or U.S.S. Enterprise sized interstellar craft.

You gotta have powerful engines and weapons to cope with angry aliens, right?

Andrea Hein is being smart and paying respect to Robert Foward and Freeman Dyson by writing this study with up to date ideas which encompasses Cube Sat tech and other commercial space company technologies.

Project Dragonfly: The case for small, laser-propelled, distributed probes

Centauri Dreams: To Build the Ultimate Telescope

Paul Gilster posts:

In interstellar terms, a ‘fast’ mission is one that is measured in decades rather than millennia. Say for the sake of argument that we achieve this capability some time within the next 200 years. Can you imagine where we’ll be in terms of telescope technology by that time? It’s an intriguing question, because telescopes capable of not just imaging exoplanets but seeing them in great detail would allow us to choose our destinations wisely even while giving us voluminous data on the myriad worlds we choose not to visit. Will they also reduce our urge to make the trip?

Former NASA administrator Dan Goldin described the effects of a telescope something like this back in 1999 at a meeting of the American Astronomical Society. Although he didn’t have a specific telescope technology in mind, he was sure that by the mid-point of the 21st Century, we would be seeing exoplanets up close, an educational opportunity unlike any ever offered. Goldin’s classroom of this future era is one I’d like to visit, if his description is anywhere near the truth:

“When you look on the walls, you see a dozen maps detailing the features of Earth-like planets orbiting neighboring stars. Schoolchildren can study the geography, oceans, and continents of other planets and imagine their exotic environments, just as we studied the Earth and wondered about exotic sounding places like Banghok and Istanbul … or, in my case growing up in the Bronx, exotic far-away places like Brooklyn.”

Webster Cash, an astronomer whose Aragoscope concept recently won a Phase I award from the NASA Innovative Advanced Concepts program (see ‘Aragoscope’ Offers High Resolution Optics in Space), has also been deeply involved in starshades, in which a large occulter works with a telescope-bearing spacecraft tens of thousands of kilometers away. With the occulter blocking light from the parent star, direct imaging of exoplanets down to Earth size and below becomes possible, allowing us to make spectroscopic analyses of their atmospheres. Pool data from fifty such systems using interferometry and spectacular close-up images may one day be possible.

starshade

Image: The basic occulter concept, with telescope trailing the occulter and using it to separate planet light from the light of the parent star. Credit: Webster Cash.

Have a look at Cash’s New Worlds pages at the University of Colorado for more. And imagine what we might do with the ability to look at an exoplanet through a view as close as a hundred kilometers, studying its oceans and continents, its weather systems, the patterns of its vegetation and, who knows, its city lights. Our one limitation would be the orbital inclination of the planet, which would prevent us from mapping every area on the surface, but given the benefits, this seems like a small issue. We would have achieved what Dan Goldin described.

Seth Shostak, whose ideas we looked at yesterday in the context of SETI and political will, has also recently written on what large — maybe I should say ‘extreme’ — telescopes can do for us. In Forget Space Travel: Build This Telescope, which ran in the Huffington Post, Shostak talks about a telescope that could map exoplanets with the same kind of detail you get with Google Earth. To study planets within 100 light years, the instrument would require capabilities that outstrip those of Cash’s cluster of interferometrically communicating space telescopes:

At 100 light-years, something the size of a Honda Accord — which I propose as a standard imaging test object — subtends an angle of a half-trillionth of a second of arc. In case that number doesn’t speak to you, it’s roughly the apparent size of a cell nucleus on Pluto, as viewed from Earth.

You will not be stunned to hear that resolving something that minuscule requires a telescope with a honking size. At ordinary optical wavelengths, “honking” works out to a mirror 100 million miles across. You could nicely fit a reflector that large between the orbits of Mercury and Mars. Big, yes, but it would permit you to examine exoplanets in incredible detail.

Or, of course, you can do what Shostak is really getting at, which is to use interferometry to pool data from thousands of small mirrors in space spread out over 100 million miles, an array of the sort we are already building for radio observations and learning how to improve for optical and infrared work on Earth. Shostak discusses a system like this, which again is conceivable within the time-frame we are talking about for developing an actual interstellar probe, as a way to vanquish what he calls ‘the tyranny of distance.’ And, he adds, ‘You can forget deep space probes.’

I doubt we would do that, however, because we can hope that among the many worlds such a space-based array would reveal to us would be some that fire our imaginations and demand much closer study. The impulse to send robotic if not human crews will doubtless be fired by many of the exotic scenes we will observe. I wouldn’t consider this mammoth space array our only way of interacting with the galaxy, then, but an indispensable adjunct to our expansion into it.

Of course Shostak takes the long, sensor derived view of exploring the Universe, his life’s work is radio telescopes.

Gilster is correct that interferometry will be an adjunct to sending robotic probes to distant interstellar worlds, you can’t make money by just gawking at places.

Or can you? 

Original post.

Centauri Dreams: Creative Constraints and Starflight

I discovered Karl Schroeder’s work when I was researching brown dwarfs some years ago. Who knew that somebody was writing novels about civilizations around these dim objects? Permanence (Tor, 2003) was a real eye-opener, as were the deep-space cultures it described. Schroeder hooked me again with his latest book — he’s dealing with a preoccupation of mine, a human presence in the deep space regions between ourselves and the nearest stars, where resources are abundant and dark worlds move far from any sun. How to maintain such a society and allow it to grow into something like an empire? Karl explains the mechanism below. Science fiction fans, of which there are many on Centauri Dreams, will know Karl as the author of many other novels, including Ventus (2000), Lady of Mazes (2005) and Sun of Suns (2006).

by Karl Schroeder

karl.schroeder_2

My newest science fiction novel, Lockstep, has just finished its serialization in Analogmagazine, and Tor Books will have it on the bookshelves March 24. Reactions have been pretty favourable—except that I’ve managed to offend a small but vocal group of my readers. It seems that some people are outraged that I’ve written an SF story in which faster than light travel is impossible.

I did write Lockstep because I understood that it’s not actual starflight that interests most people—it’s the romance of a Star Trek or Star Wars-type interstellar civilization they want. Not the reality, but the fantasy. Even so, I misjudged the, well, the fervor with which some people cling to the belief that the lightspeed limit will just somehow, magically and handwavingly, get engineered around.

This is ironic, because the whole point of Lockstep was to find a way to have that Star Wars-like interstellar civilization in reality and not just fantasy. As an artist, I’m familiar with the power of creative constraint to generate ideas, and for Lockstep I put two constraints on myself: 1) No FTL or unknown science would be allowed in the novel. 2) The novel would contain a full-blown interstellar civilization exactly like those you find in books with FTL.

Creativity under constraint is the best kind of creativity; it’s the kind that really may take us to the stars someday. In this case, by placing such mutually contradictory — even impossible — restrictions on myself, I was forced into a solution that, in hindsight, is obvious. It is simply this: everyone I know of who has thought about interstellar civilization has thought that the big problem to be solved is the problem of speed. The issue, though (as opposed to the problem), is how to travel to an interstellar destination, spend some time there, and return to the same home you left. Near-c travel solves this problem for you, but not for those you left at home. FTL solves the problem for both you and home, but with the caveat that it’s impossible. (Okay, okay, for the outraged among you: as far as we know. To put it more exactly, we can’t prove that FTL is impossible any more than we can prove that Santa Claus doesn’t exist. I’ll concede that.)

 

Read the rest here…

The Interstellar Mind of Robert Goddard

From Centauri Dreams:

Astronautics pioneer Robert H. Goddard is usually thought of in connection with liquid fuel rockets. It was his test flight of such a rocket in March of 1926 that demonstrated a principle he had been working on since patenting two concepts for future engines, one a liquid fuel design, the other a staged rocket using solid fuels. “A Method of Reaching Extreme Altitudes,” published in 1920, was a treatise published by the Smithsonian that developed the mathematics behind rocket flight, a report that discussed the possibility of a rocket reaching the Moon.

While Goddard’s work could be said to have anticipated many technologies subsequently developed by later engineers, the man was not without a visionary streak that went well beyond the near-term, expressing itself on at least one occasion on the subject of interstellar flight. Written in January of 1918, “The Ultimate Migration” was not a scientific paper but merely a set of notes, one that Goddard carefully tucked away from view, as seen in this excerpt from his later document “Material for an Autobiography” (1927):

“A manuscript I wrote on January 14, 1918 … and deposited in a friend’s safe … speculated as to the last migration of the human race, as consisting of a number of expeditions sent out into the regions of thickly distributed stars, taking in a condensed form all the knowledge of the race, using either atomic energy or hydrogen, oxygen and solar energy… [It] was contained in an inner envelope which suggested that the writing inside should be read only by an optimist.”

Optimism is, of course, standard currency in these pages, so it seems natural to reconsider Goddard’s ideas here. As to his caution, we might remember that the idea of a lunar mission discussed in “A Method of Reaching Extreme Altitudes” not long after would bring him ridicule from some elements in the press, who lectured him on the infeasibility of a rocket engine functioning in space without air to push against. It was Goddard, of course, who was right, but he was ever a cautious man, and his dislike of the press was, I suspect, not so much born out of this incident but simply confirmed by it.

In the event, Goddard’s manuscript remained sealed and was not published until 1972. What I hadn’t realized was that Goddard, on the same day he wrote the original manuscript, also wrote a condensed version that David Baker recently published for the British Interplanetary Society. It’s an interesting distillation of the rocket scientist’s thoughts that speculates on how we might use an asteroid or a small moon as the vehicle for a journey to another star. The ideal propulsion method would, in Goddard’s view, be through the control of what he called ‘intra-atomic energy.’

goddard

Image: Rocket pioneer Robert H. Goddard, whose notes on an interstellar future discuss human migration to the stars.

Atomic propulsion would allow journeys to the stars lasting thousands of years with the passengers living inside a generation ship, one in which, he noted, “the characteristics and natures of the passengers might change, with the succeeding generations.” We’ve made the same speculation here, wondering whether a crew living and dying inside an artificial world wouldn’t so adapt to the environment that it would eventually choose not to live on a planetary surface, no matter what it found in the destination solar system.

And if atomic energy could not be harnessed? In that case, Goddard speculated that humans could be placed in what we today would think of as suspended animation, the crew awakened at intervals of 10,000 years for a passage to the nearest stars, and intervals of a million years for greater distances. Goddard speculates on how an accurate clock could be built to ensure awakening, which he thought would be necessary for human intervention to steer the spacecraft if it came to be off its course. Suspended animation would involve huge changes to the body:

…will it be possible to reduce the protoplasm in the human body to the granular state, so that it can withstand the intense cold of interstellar space? It would probably be necessary to dessicate the body, more or less, before this state could be produced. Awakening may have to be done very slowly. It might be necessary to have people evolve, through a number of generations, for this purpose.

As to destinations, Goddard saw the ideal as a star like the Sun or, interestingly, a binary system with two suns like ours — perhaps he was thinking of the Alpha Centauri stars here. But that was only the beginning, for Goddard thought in terms of migration, not just exploration. His notes tell us that expeditions should be sent to all parts of the Milky Way, wherever new stars are thickly clustered. Each expedition should include “…all the knowledge, literature, art (in a condensed form), and description of tools, appliances, and processes, in as condensed, light, and indestructible a form as possible, so that a new civilisation could begin where the old ended.”

The notes end with the thought that if neither of these scenarios develops, it might still be possible to spread our species to the stars by sending human protoplasm, “…this protoplasm being of such a nature as to produce human beings eventually, by evolution.” Given that Goddard locked his manuscript away, it could have had no influence on Konstantin Tsiolkovsky’s essay “The Future of Earth and Mankind,” which in 1928 speculated that humans might travel on millennial voyages to the stars aboard the future equivalent of a Noah’s Ark.

Interstellar voyages lasting thousands of years would become a familiar trope of science fiction in the ensuing decades, but it is interesting to see how, at the dawn of liquid fuel rocketry, rocket pioneers were already thinking ahead to far-future implications of the technology. Goddard was writing at a time when estimates of the Sun’s lifetime gave our species just millions of years before its demise — a cooling Sun was a reason for future migration. We would later learn the Sun’s lifetime was much longer, but the migration of humans to the stars would retain its fascination for those who contemplate not only worldships but much faster journeys.

 

Goddard was obviously influenced by his contemporary J.D. Bernal with his The World, the Flesh and the Devil  which predicted Man’s spread out into the Solar System and interstellar space with artificial worlds and hollowed out asteroids.

 

These worlds are needed because such journeys will take hundreds or perhaps thousands of years.

 

Of course that brings in natural evolution and what these people inside these places will become when they eventually reach their destinations and if they’ll actually have need of them.

 

Robert Goddard’s Interstellar Migration

 

 

 

 

 

Advanced Oort Cloud Civilisations?

From Centauri Dreams:

Jules Verne once had the notion of a comet grazing the Earth and carrying off a number of astounded people, whose adventures comprise the plot of the 1877 novel Off on a Comet. It’s a great yarn that was chosen by Hugo Gernsback to be reprinted as a serial in the first issues of his new magazine Amazing Stories back in 1926, but with a diameter of 2300 kilometers, Verne’s comet was much larger than anything we’ve actually observed. Comets tend to be small but they make up for it in volume, with an estimated 100 billion to several trillion thought to exist in the Oort Cloud. All that adds up to a total mass of several times the Earth’s.

Of course, coming up with mass estimates is, as with so much else about the Oort Cloud, a tricky business. Paul R. Weissman noted a probable error of about one order of magnitude when he produced the above estimate in 1983. What we are safe in saying is something that has caught Freeman Dyson’s attention: While most of the mass and volume in the galaxy is comprised of stars and planets, most of the area actually belongs to asteroids and comets. There’s a lot of real estate out there, and we’ll want to take advantage of it as we move into the outer Solar System and beyond.

Comets and Resources

Embedded with rock, dust and organic molecules, comets are composed of water ice as well as frozen gases like methane, carbon dioxide, carbon monoxide, ammonia and an assortment of compounds containing nitrogen, oxygen and sulfur. Porous and undifferentiated, these bodies are malleable enough to make them interesting from the standpoint of resource extraction. Richard P. Terra wrote about the possibilities in a 1991 article published in Analog:

This light fragile structure means that the resources present in the comet nuclei will be readily accessible to any human settlers. The porous mixture of dust and ice would offer little mechanical resistance, and the two components could easily be separated by the application of heat. Volatiles could be further refined through fractional distillation while the dust, which has a high content of iron and other ferrous metals, could easily be manipulated with magnetic fields.

Put a human infrastructure out in the realm of the comets, in other words, and resource extraction should be a workable proposition. Terra talks about colonies operating in the Oort Cloud but we can also consider it, as he does, a proving ground for even deeper space technologies aimed at crossing the gulf between the stars. Either way, as permanent settlements or as way stations offering resources on millennial journeys, comets should be plentiful given that the Oort Cloud may extend half the distance to Alpha Centauri. Terra goes on:

Little additional crushing or other mechanical processing of the dust would be necessary, and its fine, loose-grained structure would make it ideal for subsequent chemical processing and refining. Comet nuclei thus represent a vast reservoir of easily accessible materials: water, carbon dioxide, ammonia, methane, and a variety of metals and complex organics.

Energy by Starlight

Given that comets probably formed on the outer edges of the solar nebula, their early orbits would have been more or less in the same plane as the rest of the young system, but gravitational interactions with passing stars would have randomized their orbital inclinations, eventually producing a sphere of the kind Jan Oort first postulated back in 1950. Much of this is speculative, because we have little observational evidence to go on, but the major part of the cometary shell probably extends from 40,000 to 60,000 AU, while a projected inner Oort population extending from just beyond the Kuiper Belt out to 10,000 AU may have cometary orbits more or less in the plane of the ecliptic. Out past 10,000 AU the separation between comets is wide, perhaps about 20 AU, meaning that any communities that form out here will be incredibly isolated.

Kuiper_oort

Image: An artist’s rendering of the Kuiper Belt and Oort Cloud. Credit: NASA/Donald K. Yeomans.

Whether humans can exploit cometary resources this far from home will depend on whether or not they can find sources of energy. In a paper called “Fastships and Nomads,” presented at the Conference on Interstellar Migration held at Los Alamos in 1983, Eric Jones and Ben Finney give a nod to non-renewable energy sources like deuterium, given that heavy elements like uranium will be hard to come by. Indeed, a typical comet, in Richard Terra’s figures, holds between 50,000 and 100,000 metric tons of deuterium, enough to power early settlement and mining.

But over the long haul, Jones and Finney are interested in keeping colonies alive through renewable resources, and that means starlight. The researchers talk about building vast mirrors using aluminum from comets, with each 1 MW mirror about the size of the continental United States. Now here’s a science fiction setting with punch, as the two describe it:

Although the mirrors would be tended by autonomous maintenance robots, the nomads would have to live nearby in case something went wrong… Although we could imagine that the several hundred people who could be supported by the resources of a single comet might live in a single habitat, the mirrors supporting that community would be spread across about 150,000 km. Trouble with a mirror or robot on the periphery of the mirror array would mean a long trip, several hours at least. It would make more sense if the community were dispersed in smaller groups so that trouble could be reached in a shorter time. There are also social reasons for expecting the nomad communities to be divided into smaller co-living groups.

Jones and Finney go on to point out that humans tend to work best in groups of about a dozen adults, whether in the form of hunter/gatherer bands, army platoons, bridge clubs or political cells. This observation of behavior leads them to speculate that bands of about 25 men, women and children would live together in a large habitat — think again of an O’Neill cylinder — built out of cometary materials, from which they would tend a mirror farm with the help of robots and computers. Each small group would tend a mirror farm perhaps 30,000 kilometers across.

The picture widens beyond this to include the need for larger communities that would occasionally come together, helping to avoid the genetic dangers of inbreeding and providing a larger social environment. Thus we might have about 500 individuals in clusters of 20 cometary bands which would stay in contact and periodically meet. Jones and Finney consider the band-tribe structure to be the smallest grouping that seems practical for any human community. Who would such a community attract — outcasts, dissidents, adventurers? And how would Oort Cloud settlers react to the possibility of going further still, to another star?

While by no means is this is a new theory, ( note the Jules Verne story ), it presents the scenario of the very slow spreading of intelligent biological life through-out the Galaxy ( see Slow Galactic Colonization, Zoo Hypothesis and the Fermi Paradox ).

Now here’s a thought; could a potential alien Oort Cloud civilization be the basis of the Ancient Astronaut Theory and the legends of the Sumerian Gods, the Anunnaki?

There’s no hard evidence of that of course, but there are Pluto-sized and larger objects in the Kuiper Belt glowing in the infrared, a sign that was said to represent a Dyson Sphere type civilisation.

Either these are natural objects such as Brown Dwarf stars, or potential alien civilisations whom don’t care whether they are detected in the infrared or not.

And that’s disturbing.

Original article.

Crowl Space article

Did Voyager 1 Leave The Solar System?

From nytimes.com:

For about three hours on Wednesday, Voyager 1 had left the solar system — before a rewritten news release headline pulled it back in. Voyager 1, one of two spacecraft NASA launched in 1977 on a grand tour of the outer planets, is now nearly 11.5 billion miles from the Sun, speeding away at 38,000 miles per hour. In a paper accepted by the journal Geophysical Review Letters, William R. Webber of New Mexico State University and Frank B. McDonald of the University of Maryland reported that on Aug. 25 last year, the spacecraft observed a sudden change in the mix of cosmic rays hitting it.

Cosmic rays are high-speed charged particles, mostly protons. Voyager 1’s instruments recorded nearly a doubling of cosmic rays from outside the solar system, while the intensity of cosmic rays that had been trapped in the outer solar system dropped by 90 percent.

The American Geophysical Union, publisher of the journal, sent out the news Wednesday morning: “Voyager 1 has left the solar system.” NASA officials, surprised, countered with a contrary statement from Edward C. Stone, the Voyager project scientist. “It is the consensus of the Voyager science team that Voyager 1 has not yet left the solar system or reached interstellar space,” Dr. Stone said. He said that the critical indicator would be a change in the direction of the magnetic field, not cosmic rays, for marking the outermost boundary of the solar system. In their paper, Dr. Webber and Dr. McDonald (who died only six days after Voyager observed the shift in cosmic rays) did not claim that Voyager 1 was in interstellar space, but had entered a part of the solar system they called the “heliocliff.” The geophysical union then sent out another e-mail with the same article but a milder headline: “Voyager 1 has entered a new region of space.”

Eventually Voyager 1 will leave the Solar System and there will be no dispute about it.

In the meantime, mainstream science will learn and post about the outer edges of the Solar System as Voyager 1 creeps along at .00002 lightspeed ( 37,500 mph ) .

Of course there are those in mainstream media and science who believe that mankind will never leave the Solar System because they proclaim that spacecraft will never be built that go faster than that.

Already the Pluto probe New Horizon traveling at 54,500 mph is breaking Voyager’s speed record and will probably leave the Solar System before Voyager does!

I’m certain in 100 years star probes will be launched toward Alpha Centauri and Tau Ceti that reach appreciable percentages of lightspeed bypassing all of our old interplanetary probes and perhaps in several centuries, mankind’s interstellar colonies will be picking up these old probes to study them, like old time capsules!

Where’s Voyager 1? That Depends.

Hat tip to the Daily Grail.

Habitability vs. Colonizability

From kschroeder.com:

Habitability is the measure of highest value in planet-hunting. But should it be?

Kepler and the other planet-finding missions have begun to bear fruit. We now know that most stars have planets, and that a surprising percentage will have Earth-sized worlds in their habitable zone–the region where things are not too hot and not too cold, where life can develop. Astronomers are justly fascinated by this region and what they can find there. We have the opportunity, in our lifetimes, to learn whether life exists outside our own solar system, and maybe even find out how common it is.

We have another opportunity, too–one less talked-about by astronomers but a common conversation among science fiction writers. For the first time in  history, we may be able to identify worlds we could move to and live on.

As we think about this second possibility, it’s important to bear in mind that habitability and colonizability are not the same thing. Nobody seems to be doing this; I can’t find any term but habitability used to describe the exoplanets we’re finding. Whether a planet is habitable according to the current definition of the term has nothing to do with whether humans could settle there. So, the term applies to places that are vitally important for study; but it doesn’t necessarily apply to places we might want to go.

Whether a planet is habitable according to the current definition of the term has nothing to do with whether humans could settle there.

To see the difference between habitability and colonizability, we can look at two very different planets: Gliese 581g and Alpha Centauri Bb. Neither of these is confirmed to exist, but we have enough data to be able to say a little about what they’re like if they do. Gliese 581g is a super-earth orbiting in the middle of its star’s habitable zone. This means liquid water could well form on its surface, which makes it a habitable world according to the current definition.

Centauri Bb, on the other hand, orbits very close to its star, and its surface temperature is likely high enough to render one half of it (it’s tidally locked to its sun, like our moon is to Earth) a magma sea. Alpha Centauri Bb is most definitely not habitable.

So Gliese 581g is habitable and Centauri Bb is not; but does this mean that 581g is more colonizable than Bb? Actually, no.

Because 581g is a super-earth, the gravity on its surface is going to be greater than Earth’s. Estimates vary, but the upper end of the range puts it at 1.7g. If you weigh 150 lbs on Earth, you’d weigh 255 lbs on 581g. This is with your current musculature; convert all your body fat to muscle and you might just be able to get around without having to use leg braces or a wheelchair. However, your cardiovascular system is going to be under a permanent strain on this world–and there’s no way to engineer your habitat to comfortably compensate.

On the other hand, Centauri Bb is about the same size as Earth. Its surface gravity is likely to be around the same. Since it’s tidally locked, half of its surface is indeed a lava hell–but the other hemisphere will be cooler, and potentially much cooler. I wouldn’t bet there’s any breathable atmosphere or open water there, but as a place to build sealed domes to live in, it’s not off the table.

Also consider that it’s easier to get stuff onto and off of the surface of Bb than the surface of a high-gravity super-earth. Add to that the very thick atmosphere that 581g is likely to have, and human subsistence on 581g–even if it’s a paradise for local life–is looking more and more awkward.

Doubtless 581g is a better candidate for life; but to me, Centauri Bb looks more colonizable.

A definition of colonizability

We’ve got a fairly good definition of what makes a planet habitable: stable temperatures suitable for the formation of liquid water. Is it possible to develop an equally satisfying (or more satisfying) definition of colonizability for a planet?

Yes–and here it is. Firstly, a colonizable world has to have an accessible surface. A super-earth with an incredibly thick atmosphere and a surface gravity of 3 or 4 gees just isn’t colonizable, however much life there may be on it.

Secondly, and more subtly, the right elements have to be accessible on the planet for it to be colonizable. This seems a bit puzzling at first, but what if Centauri Bb is the only planet in the Centauri system, and it has only trace elements of Nitrogen in its composition? It’s not going to matter how abundant everything else is. A planet like this–a star system like this–cannot support a colony of earthly life forms. Nitrogen is a critical component of biological life, at least our flavour of it.

In an article entitled “The Age of Substitutibility”, published in Science in 1978, H.E. Goeller and A.M. Weinberg proposed an artificial mineral they called Demandite. It comes in two forms. A molecule of industrial demandite would contain all the elements necessary for industrial manufacturing and construction, in the proportions that you’d get if you took, say, an average city and ground it up into a fine pulp. There’re about 20 elements in industrial demandite including carbon, iron, sodium, chlorine etc. Biological demandite, on the other hand, is made up almost entirely of just six elements: hydrogen, oxygen, carbon, nitrogen, phosphorus and sulfur. (If you ground up an entire ecosystem and looked at the proportions of these elements making it up, you could in fact find an existing molecule that has exactly the same proportions. It’s called cellulose.)

Thirdly, there must be a manageable flow of energy at the surface. The place can be hot or cold, but it has to be possible for us to move heat around. You can’t really do that at the surface of Venus, for instance; it’s 800 degrees everywhere on the ground so your air conditioning spends an insane amount of energy just overcoming this thermal inertia. Access to a gradient of temperature or energy is what makes physical work possible.

Obviously things like surface pressure, stellar intensity, distance from Earth etc. play big parts, but these are the main three factors that I can see. It should be instantly obvious that they have almost nothing to do with how far the planet is from its primary. There is no ‘colonizable zone’ similar to a ‘habitable zone’ around any given star. The judgment has to be made on a world by world basis.

Note that by this definition, Mars is marginally colonizable. Why? Not because of  its temperature or low air pressure, but because it’s very low in Nitrogen, at least at the surface. The combination of Mars and Ceres may make a colonizable unit, if Ceres has a good supply of Nitrogen in its makeup–and this idea of combo environments being colonizable complicates the picture. We’re unlikely to be able to detect an object the size of Ceres around Alpha Centauri, so long-distance elimination of a system as a candidate for colonizability is going to be difficult. Conversely, if we can detect the presence of all the elements necessary for life and industry on a roughly Earth-sized planet, regardless of whether it’s in its star’s habitable zone, we may have a candidate for colonizability.

The colonizability of an accessible planet with a good temperature gradient can be rated according to how well its composition matches the compositions of industrial and biological demandite. We can get very precise with this scale, and we probably should. It, and not habitability, is the true measure of which worlds we might wish to visit.

To sum up, I’m proposing that we add a second measure to the existing scale of habitability when studying exoplanets. The habitability of a planet actually says nothing about how attractive it might be for us to visit. Colonizability is the missing metric for judging the value of planets around other stars.

This raises the ethical question of at which point do we as a race change the environment of an alien world’s biology in order to suit our needs?

Do we engage in biological genicide to seed a planet with Earth-life, or do we adapt ourselves to suit the exoplanet’s environment?

Or do we move on to another planet that is more “colonizable” as Schroeder suggests and totally build a habitat from scratch?

A tale of two worlds: habitable, or colonizable? 

Hat tip to Centauri Dreams.

Interstellar Travel and the Long View

From Centauri Dreams:

[…]

Building Structures That Last

A sense of that futurity pervaded our recent sessions at the Tennessee Valley Interstellar Workshop in Huntsville. Several speakers alluded to instances in human history where people looked well beyond their own generation, a natural thought for a conference discussing technologies that might take decades if not centuries to achieve. We talked about a solar power project that might take 35 years, or perhaps 50 (much more about this in coming days).

chartres2

The theme became explicit when educator and blogger Mike Mongo talked about getting interstellar issues across to the public, referring to vast projects like the pyramids and the great cathedrals of Europe. Cathedrals are a fascinating study in their own right, and it’s worth pausing on them as we ponder long-term notions. Although they’re often considered classic instances of people building for a remote future, some cathedrals were built surprisingly quickly. Anyone who has stood in awe at the magnificent lines of Chartres southwest of Paris is surprised to learn that it came together in less than 60 years (the main structure in a scant 26), though keep in mind that this was partly a reconstruction of an earlier structure that dated back to 1145.

Image: The great cathedral at Chartres.

With unstinting public support, such things could happen even with the engineering of the day, creating what historians now view as the high point of French Gothic art. Each cathedral, of course, tells its own tale. Salisbury Cathedral was completed except for its spire in 45 years. Other cathedrals took longer. Notre Dame in Paris was the work of a century, as was Lincoln Cathedral, while the record for cathedral construction surely belongs to Cologne, where the foundation stone was laid in 1248. By the time of the Reformation 300 years later, the roof was still unfinished, and later turmoil pushed the completion of the cathedral all the way into the 19th Century, with many stops and starts along the way.

Remember, too, that the cathedral builders lived at a time when the average lifespan was in the 30s. The 15-year old boy who started working on the foundation of a cathedral might have hoped to see its consecration but he surely knew the odds didn’t favor it. Humans are remarkably good at this kind of thing, even if the frenetic pace and short-term focus of our times makes us forget it. Robert Kennedy pointed out to me at the conference that the Dutch dike system has been maintained for over 500 years, and can actually be traced back as far as the 9th Century. The idea of technology-building across generations is hardly something new to our civilization.

The ‘long result’ context is an interesting one in which to place our interstellar thinking. Naturally we’d like to make things happen faster than the 4000-year plus journeys I talked about on Friday with worldships, though my guess is that as the species becomes truly spacefaring and begins to differentiate, we’ll see colonies aboard O’Neill-class cylinders holding thousands, many of the colonists being people who will spend less and less time on a planetary surface. At some point, it would be entirely natural to see one of these groups decide to head into the interstellar deep. They would be, after all, taking their world with them, a world that was already home.

Evolutionary Change in Space

Gerald Driggers is a retired engineer and current science fiction author who worked with Gerald O’Neill in the 1970s. I see him as worldship material because he has chosen for the last seventeen years to live on a boat, saying “It was the closest thing I could get to a space ship.” Driggers believes we can begin our interstellar work by getting humans to Mars, where they will be faced with many of the challenges that will attend much longer-term missions. We must, after all, build a system-wide infrastructure, mastering the complexities of power generation and resource extraction on entirely new scales, before we can truly hope to go interstellar.

And what happens to humans as they begin working in extreme environments? Evolution doesn’t stop when we leave the planet, as Freeman Dyson is so fond of pointing out. These are changes that should be beneficial, says Driggers. “Evolutionary steps toward becoming interstellar voyagers reduce the chances for human failures on these journeys. We’re going to change, and we will continue to change as we look toward longer voyages. The first humans to arrive around another star system probably won’t be like anybody in the audience today.” Responding to evolutionary change, Martians may make the best designers and builders of interstellar craft.

driggers_hsv

Image: Gerald Driggers discussing a near-term infrastructure that will one day support interstellar missions.

Get it right on Mars, in other words, and we get it right elsewhere and learn the basics of infrastructure building all the way to the Kuiper Belt, with active lunar settlements and plentiful activity among the asteroids. Along the way we adapt, we change. Driggers’ worst-case scenario has Martian settlements delayed until the mid-22nd Century, but he is hopeful that the date can be moved up and the infrastructure begun.

All of which brings me back to something Mike Mongo talked about. We are not going to the stars ourselves, but we can inspire and train people who will solve many of the technical problems going forward, just as they train the next generation. One of these generations will one day train the crew of the first human interstellar mission, or if we settle on robotics, the controllers who will manage our first probes. Placing ourselves in the context of the long result acknowledges our obligation to future generations as we begin putting foundation stones in place.

This is not the first time Paul Gilster and others have compared building interstellar ships and matching infrastructure to building pyramids and cathedrals. Both were long range projects in the human past that required multi-generational planning, money, political will and many generations of workers who never saw the end result.

Now, whether interstellar ships will be multi-generation, fast, slow or whatever in the end, they will result from human cultural biases and will be unique in this region of space.

In the end, they will be the result of many generations of human genius.

The Long Result